Sensing technology has been widely investigated and utilized for gas detection. Due to the different applicability and inherent limitations of different gas sensing technologies, researchers have been working on different scenarios with enhanced gas sensor calibration. This paper reviews the descriptions, evaluation, comparison and recent developments in existing gas sensing technologies. A classification of sensing technologies is given, based on the variation of electrical and other properties. Detailed introduction to sensing methods based on electrical variation is discussed through further classification according to sensing materials, including metal oxide semiconductors, polymers, carbon nanotubes, and moisture absorbing materials. Methods based on other kinds of variations such as optical, calorimetric, acoustic and gas-chromatographic, are presented in a general way. Several suggestions related to future development are also discussed. Furthermore, this paper focuses on sensitivity and selectivity for performance indicators to compare different sensing technologies, analyzes the factors that influence these two indicators, and lists several corresponding improved approaches.
References
[1]
Chen, D.; Lei, S.; Chen, Y. A single polyaniline nanofiber field effect transistor and its gas sensing mechanisms. Sensors 2011, 11, 6509–6516.
[2]
Anderson, T.; Ren, F.; Pearton, S.; Kang, B.S.; Wang, H.-T.; Chang, C.-Y.; Lin, J. Advances in hydrogen, carbon dioxide, and hydrocarbon gas sensor technology using GaN and ZnO-based devices. Sensors 2009, 9, 4669–4694.
[3]
Liu, J.; Wang, W.; Li, S.; Liu, M.; He, S. Advances in SAW gas sensors based on the condensate-adsorption effect. Sensors 2011, 11, 11871–11884.
[4]
Chinvongamorn, C.; Pinwattana, K.; Praphairaksit, N.; Imato, T.; Chailapakul, O. Amperometric determination of sulfite by gas diffusion-sequential injection with boron-doped diamond electrode. Sensors 2008, 8, 1846–1857.
[5]
Chang, Y.-C.; Bai, H.; Li, S.-N.; Kuo, C.-N. Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument. Sensors 2011, 11, 4060–4072.
[6]
Vashpanov, Y.; Choo, H.; Kim, D.S. Dynamic control of adsorption sensitivity for photo-EMF-based ammonia gas sensors using a wireless network. Sensors 2011, 11, 10930–10939.
[7]
Huyen, D.N.; Tung, N.T.; Thien, N.D.; Thanh, L.H. Effect of TiO2 on the gas sensing features of TiO2/PANi nanocomposites. Sensors 2011, 11, 1924–1931.
[8]
Wang, Y.; Tong, M.M.; Zhang, D.; Gao, Z. Improving the performance of catalytic combustion type methane gas sensors using nanostructure elements doped with rare earth cocatalysts. Sensors 2011, 11, 19–31.
[9]
Manzoli, A.; Steffens, C.; Paschoalin, R.T.; Correa, A.A.; Alves, W.F.; Leite, F.L.; Herrmann, P.S.P. Low-cost gas sensors produced by the graphite line-patterning technique applied to monitoring banana ripeness. Sensors 2011, 11, 6425–6434.
[10]
Wongchoosuk, C.; Wisitsoraat, A.; Phokharatkul, D.; Tuantranont, A.; Kerdcharoen, T. Multi-walled carbon nanotube-doped tungsten oxide thin films for hydrogen gas sensing. Sensors 2010, 10, 7705–7715.
[11]
Chaisitsak, S. Nanocrystalline SnO2: F thin films for liquid petroleum gas sensors. Sensors 2011, 11, 7127–7140.
[12]
Alfeeli, B.; Pickrell, G.; Wang, A. Sub-nanoliter spectroscopic gas sensor. Sensors 2006, 6, 1308–1320.
[13]
Cordos, E.; Ferenczi, L.; Cadar, S.; Costiug, S.; Pitl, G.; Aciu, A.; Ghita, A.; Chintoanu, M. Methane and carbon monoxide gas detection system based on semiconductor sensor. Proceedings of 2006 IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 25– 28 May 2006; pp. 208–211.
[14]
Berger, F.; Sanchez, J.; Heintz, O. Detection of hydrogen fluoride using SnO2-based gas sensors: Understanding of the reactional mechanism. Sens. Actuators B 2009, 143, 152–157.
[15]
Hagleitner, C.; Lange, D.; Hierlemann, A.; Brand, O.; Baltes, H. CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors. IEEE J. Solid-St. Circ. 2002, 37, 1867–1878.
[16]
Ding, W.; Hayashi, R.; Suehiro, J.; Imasaka, K.; Hara, M. Observation of dynamic behavior of PD-generated SF6 decompositions using carbon nanotube gas sensor. Proceedings of 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP '05), Nashville, TN, USA, 16–19 October 2005; pp. 561–564.
[17]
McNaghten, E.D.; Parkes, A.M.; Griffiths, B.C.; Whitehouse, A.I.; Palanco, S. Detection of trace concentrations of helium and argon in gas mixtures by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B 2009, 64, 1111–1118.
[18]
Rubio, R.; Santander, J.; Fonseca, L.; Sabate, N.; Gracia, I.; Cane, C.; Udina, S.; Marco, S. Non-selective NDIR array for gas detection. Sens. Actuators B 2007, 127, 69–73.
[19]
Baetz, W.; Kroll, A.; Bonow, G. Mobile Robots with active IR-optical sensing for remote gas detection and source localization. Proceedings of 2009 IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, 12– 17 May 2009; pp. 2773–2778.
[20]
Kulinyi, S.; Brandszájsz, D.; Amine, H.; ádám, M.; Fürjes, P.; Bársony, I.; Dücso, C. Olfactory detection of methane, propane, butane and hexane using conventional transmitter norms. Sens. Actuators B 2005, 111, 286–292.
[21]
Catalan, L.J.J.; Liang, V.; Jia, C.Q. Comparison of various detection limit estimates for volatile sulphur compounds by gas chromatography with pulsed flame photometric detection. J. Chromatogr. A 2006, 1136, 89–98.
[22]
Zhu, C.; Shan, M.; He, S. A precise sensor for SF6 based on piezoelectric ultrasound. Rare Met. Mater. Eng. 2006, 35, 157–158.
[23]
Zhu, C.; Shan, M.; Liu, Y.; Zhang, H. Microconcentration detector for SF6 based on CPLD. Chin. J. Sci. Instrum. 2005, 26, 448–449.
[24]
Shan, M.; Li, X.; Zhu, C.; Zhang, J. Gas concentration detection using ultrasonic based on wireless sensor networks. Proceedings of the 2nd International Conference on Information Science and Engineering (ICISE), Hangzhou, China, 4–6 December 2010; pp. 2101–2106.
[25]
Tong, L.; Wu, G.; Sheng, J.; Zhang, J.; Zhou, L. Oil-gas separation mechanism of polymer membranes applied to online transformer dissolved gases monitoring. Proceedings of 2004 IEEE International Symposium on Electrical Insulation, Indianapolis, IN, USA, 19– 22 September 2004; pp. 97–100.
[26]
Duval, M. New techniques for dissolved gas-in-oil analysis. IEEE Electr. Insul. Mag. 2003, 19, 6–15.
[27]
Yamamoto, O.; Takuma, T.; Kinouchi, M. Recovery of SF6 from N2/SF6 gas mixtures by using a polymer membrane. IEEE Electr. Insul. Mag. 2002, 18, 32–37.
[28]
Ding, W.; Hayashi, R.; Suehiro, J.; Zhou, G.; Imasaka, K.; Hara, M. Calibration methods of carbon nanotube gas sensor for partial discharge detection in SF6. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 353–361.
[29]
Tamaekong, N.; Liewhiran, C.; Wisitsoraat, A.; Phanichphant, S. Flame-spray-made undoped zinc oxide films for gas sensing applications. Sensors 2010, 10, 7863–7873.
[30]
Ho, K.-C.; Hung, W.-T.; Yang, J.-C. On the Electrooxidation and amperometric detection of no gas at the pt/nafion?electrode. Sensors 2003, 3, 290–303.
[31]
Marr, I.; Rei?, S.; Hagen, G.; Moos, R. Planar zeolite film-based potentiometric gas sensors manufactured by a combined thick-film and electroplating technique. Sensors 2011, 11, 7736–7748.
[32]
Koplin, T.J.; Siemons, M.; Océn-Valéntin, C.; Sanders, D.; Simon, U. Workflow for high throughput screening of gas sensing materials. Sensors 2006, 6, 298–307.
[33]
Endres, H.E.; G?ttler, W.; Hartinger, R.; Drost, S.; Hellmich, W.; Müller, G.; Braunmühl, C.B.; Krenkow, A.; Perego, C.; Sberveglieri, G. A thin-film SnO2 sensor system for simultaneous detection of CO and NO2 with neural signal evaluation. Sens. Actuators B 1996, 36, 353–357.
[34]
Zheng, H. Experiment study of continuous emission monitoring system based on differential optical absorption spectroscopy. Proceedings of 2008 International Workshop on Education Technology and Training and Geoscience and Remote Sensing (ETT and GRS), Shanghai, China, 21–22 December 2008; pp. 175–177.
[35]
Miya, H.; Shiina, T.; Kato, T.; Noguchi, K.; Fukuchi, T.; Asahi, I.; Sugimoto, S.; Ninomiya, H.; Shimamoto, Y. Compact Raman Lidar for hydrogen gas leak detection. Proceedings of 2009 Conference on Lasers and Electro-Optics/Pacific Rim (CLEOPR), Shanghai, China, 30 July–3 August 2009; pp. 1–2.
[36]
Tardy, P.; Coulon, J.R.; Lucat, C.; Menil, F. Dynamic thermal conductivity sensor for gas detection. Sens. Actuators B 2004, 98, 63–68.
[37]
Caucheteur, C.; Debliquy, M.; Lahem, D.; Megret, P. Catalytic fiber bragg grating sensor for hydrogen leak detection in air. IEEE Photonics Technol. Lett. 2008, 20, 96–98.
[38]
Sonoyama, M.; Kato, Y.; Fujita, H. Application of ultrasonic to a hydrogen sensor. Proceedings of 2010 IEEE Sensors, Kona, HI, USA, 1– 4 November 2010; pp. 2141–2144.
[39]
Frodl, R.; Tille, T. A high-precision NDIR gas sensor for automotive applications. IEEE Sens. J. 2006, 6, 1697–1705.
[40]
Billi, E.; Viricelle, J.-P.; Montanaro, L.; Pijolat, C. Development of a protected gas sensor for exhaust automotive applications. IEEE Sens. J. 2002, 2, 342–348.
[41]
Iannotta, S.; Toccoli, T.; Tonezzer, M.; Pallaoro, A.; Corradi, C.; Mazzola, M.; Coppede, N.; Siviero, F.; Forleo, A.; Siciliano, P.; et al. Novel nano-hybrid gas sensor based on n-TiO2 functionalized by phthalocyanines via upersonic beam co-deposition: Performance and application to automotive air quality. Proceedings of 2008 IEEE Sensor, Lecce, Italy, 26– 29 October 2008; pp. 1498–1500.
[42]
Belov, I.; Wingbrant, H.; Spetz, A.L.; Sundgren, H.; Thuner, B.; Svenningstorp, H.; Leisner, P. Thermal and flow analysis of SiC-based gas sensors for automotive applications. Proceedings of the 5th International Conference on Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, Brussels, Belgium, 10–12 May 2004; pp. 475–482.
[43]
Fleming, W.J. Overview of automotive sensors. IEEE Sens. J. 2001, 1, 296–308.
[44]
Qu, J.; Chai, Y.; Yang, S.X. A real-time de-noising algorithm for e-noses in a wireless sensor network. Sensors 2009, 9, 895–908.
[45]
Song, K.; Wang, Q.; Liu, Q.; Zhang, H.; Cheng, Y. A wireless electronic nose system using a fe2o3 gas sensing array and least squares support vector regression. Sensors 2011, 11, 485–505.
[46]
Lilienthal, A.J.; Loutfi, A.; Duckett, T. Airborne chemical sensing with mobile robots. Sensors 2006, 6, 1616–1678.
[47]
Tian, F.; Yang, S.X.; Dong, K. Circuit and noise analysis of odorant gas sensors in an E-nose. Sensors 2005, 5, 85–96.
[48]
Elia, A.; di Franco, C.; Lugarà, P.M.; Scamarcio, G. Photoacoustic spectroscopy with quantum cascade lasers for trace gas detection. Sensors 2006, 6, 1411–1419.
[49]
Bahraminejad, B.; Basri, S.; Isa, M.; Hambli, Z. Real-time gas identification by analyzing the transient response of capillary-attached conductive gas sensor. Sensors 2010, 10, 5359–5377.
[50]
Sysoev, V.V.; Kiselev, I.; Frietsch, M.; Goschnick, J. Temperature gradient effect on gas discrimination power of a metal-oxide thin-film sensor microarray. Sensors 2004, 4, 37–46.
[51]
Gonzalez-Jimenez, J.; Monroy, J.G.; Blanco, J.L. The multi-chamber electronic nose-An improved olfaction sensor for mobile robotics. Sensors 2011, 11, 6145–6164.
[52]
Xiaobo, Z.; Jiewen, Z.; Shouyi, W.; Xingyi, H. Vinegar classification based on feature extraction and selection from tin oxide gas sensor array data. Sensors 2003, 3, 101–109.
[53]
Munoz, B.C.; Steinthal, G.; Sunshine, S. Conductive polymercarbon black composites-based sensor arrays for use in an electronic nose. Sens. Rev. 1999, 19, 300–305.
[54]
Shrivas, A.G.; Bavane, R.G.; Mahajan, A.M. Electronic nose: A toxic gas sensor by polyaniline thin film conducting polymer. Proceedings of International Workshop on Physics of Semiconductor Devices 2007(IWPSD 2007), Mumbai, India, 16–20 December 2007; pp. 621–623.
[55]
Hatfid, J.V.; Neaves, P.; Hicks, P.J.; Persaud, K.; Travers, P. Towards an integrated electronic nose using conducting polymer. Sens. Actuators B 1994, 18, 221–228.
[56]
Dowdeswell, R.M.; Payne, P.A. Odor measurement using conducting polymer gas sensors and an artificial neural network decision system. Eng. Sci. Educ. J. 1999, 8, 129–134.
[57]
Rubio, R.; Santander, J.; Sabate, N.; Fonseca, L.; Gracia, I.; Cane, C.; Moreno, M.; Marco, S. Thermopile sensor array for an electronic nose integrated non-selective NDIR Gas Detection System. Proceedings of 2005 Spanish Conference on Electron Devices, Barcelona, Spain, 2–4 February 2005; pp. 503–505.
[58]
So, S.G.; Chang, D.; Al'Rifai, O.; Wysocki, G.; Kosterev, A.A.; Tittel, F.K. Development of laser based spectroscopic trace-gas sensors for environmental sensor networks and medical exposure monitors. Proceedings of CLEO/QELS 2008, San Jose, CA, USA, 4–9 May 2008; pp. 1–2.
[59]
Kumar, P.Y.; Ganesh, T.S. design and construction of an Odour sensor for various biomedical applications. Proceedings of 2005 Annual IEEE India Council Conference, Chennai, India, 11– 13 December 2005; pp. 6–8.
[60]
Vink, J.; Verhoeven, H.J.; Huijsing, J.H. response speed optimization of thermal gas-flow sensors for medical application. Proceedings of the 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden, 25–29 June 1995; pp. 524–527.
[61]
Ke, M.-T.; Lee, M.-T.; Lee, C.-Y.; Fu, L.-M. A MEMS-based benzene gas sensor with a self-heating wo3 sensing layer. Sensors 2009, 9, 2895–2906.
[62]
Kim, K.-S.; Baek, W.-H.; Kim, J.-M.; Yoon, T.-S.; Lee, H.H.; Kang, C.J.; Kim, Y.-S. A nanopore structured high performance toluene gas sensor made by nanoimprinting method. Sensors 2010, 10, 765–774.
[63]
Chou, S.M.; Teoh, L.G.; Lai, W.H.; Su, Y.H.; Hon, M.H. ZnO: Al thin film gas sensor for detection of ethanol vapor. Sensors 2006, 6, 1420–1427.
[64]
Kim, S.-J.; Hwang, I.-S.; Kang, Y.C.; Lee, J.-H. Design of selective gas sensors using additive-loaded in2o3 hollow spheres prepared by combinatorial hydrothermal reactions. Sensors 2011, 11, 10603–10614.
[65]
Cubillas, A.M.; Lazaro, J.M.; Conde, O.M.; Petrovich, M.N.; Lopez-Higuera, J.M. Gas sensor based on photonic crystal fibres in the 2ν3 and ν2 + 2ν3 vibrational bands of methane. Sensors 2009, 9, 6261–6272.
[66]
Ding, B.; Wang, M.; Yu, J.; Sun, G. Gas sensors based on electrospun nanofibers. Sensors 2009, 9, 1609–1624.
[67]
Bakrania, S.D.; Wooldridge, M.S. The effects of the location of Au additives on combustion-generated SnO2 nanopowders for co gas sensing. Sensors 2010, 10, 7002–7017.
[68]
Fraiwan, L.; Lweesy, K.; Bani-Salma, A.; Mani, N. A wireless home safety gas leakage detection system. Proceedings of the 1st Middle East Conference on Biomedical Engineering (MECBME), Sharjah, United Arab Emirates, 21–24 February 2011; pp. 11–14.
[69]
Xiao, G.; Zhang, Z.; Weber, J.; Ding, H.; McIntosh, H.; Desrosiers, D.; Nong, G.; Won, D.; Dunford, J.; Tunney, J.; et al. Trace amount formaldehyde gas detection for indoor air quality monitoring. Proceedings of 2011 IEEE Instrumentation and Measurement Technology Conference (I2MTC), Hangzhou, China, 10– 12 May 2011; pp. 1–4.
[70]
Emadi, T.A.; Shafai, C.; Freund, M.S.; Thomson, D.J.; Jayasz, D.S.; Whitex, N.D.G. Development of a polymer-based gas sensor-humidity and CO2 sensitivity. Proceedings of the 2nd Microsystems and Nanoelectronics Research Conference (MNRC), Ottawa, ON, Canada, 13– 14 October 2009; pp. 112–115.
[71]
Johan, S.; Xuezhi, Z.; Unander, T.; Koptyug, A.; Nilsson, H. Remote moisture sensing utilizing ordinary RFID tags. Proceedings of 2007 IEEE Sensors, Atlanta, GA, USA, 28– 31 October 2007; pp. 308–311.
[72]
Wang, Y.; Wang, K.; Wang, Q.; Tang, F. Measurement of CH4 by differential infrared optical absorption spectroscopy. Proceedings of the 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 16– 19 August 2009; pp. 1761–1766.
[73]
Kwon, J.; Ahn, G.; Kim, G.; Kim, J.C.; Kim, H. A study on NDIR-based CO2 sensor to apply remote air quality monitoring system. Proceedings of 2009 ICCAS-SICE, Fukuoka, Japan, 18– 21 August 2009; pp. 1683–1687.
[74]
Hulko, M.; Hospach, I.; Krasteva, N.; Nelles, G. Cytochrome C biosensor—A model for gas sensing. Sensors 2011, 11, 5968–5980.
[75]
Lazik, D.; Ebert, S.; Leuthold, M.; Hagenau, J.; Geistlinger, H. Membrane based measurement technology for in situ monitoring of gases in soil. Sensors 2009, 9, 756–767.
[76]
Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 2010, 10, 5469–5502.
[77]
Zhang, J.; Hu, J.Q.; Zhu, F.R.; Gong, H.; O'Shea, S.J. Quartz crystal microbalance coated with sol-gel-derived thin films as gas sensor for no detection. Sensors 2003, 3, 404–414.
[78]
Chen, I.-C.; Lin, S.-S.; Lin, T.-J.; Hsu, C.-L.; Hsueh, T.J.; Shieh, T.-Y. The assessment for sensitivity of a NO2 gas sensor with ZnGa2O4/ZnO core-shell nanowires-A novel approach. Sensors 2010, 10, 3057–3072.
[79]
Dong, H.Y.; Chul, H.K.; Hyung-Ki, H.; Seung-Ryeol, K.; Kyuchung, L.; Ho, G.S.; Ji, E.K. Highly sensitive and selective ammonia gas Sensor. Proceedings of 1997 International Conference on Solid State Sensors and Actuators, Chicago, IL, USA, 16–19 June 1997; pp. 959–962.
[80]
Jimenez, I.; Vila, A.M.; Calveras, A.C.; Morante, J.R. Gas-sensing properties of catalytically modified WO3 with copper and vanadium for NH3 detection. IEEE Sens. J. 2005, 5, 385–391.
[81]
Sofian, M.K.; Oussama, M.E.; Imad, A.A.; Marsha, C.K. Semiconducting metal oxide based sensors for selective gas pollutant detection. Sensors 2009, 9, 8158–8196.
[82]
Yang, L.; Rongwei, Z.; Staiculescu, D.; Wong, C.P.; Tentzeris, M.M. A novel conformal RFID-enabled module utilizing inkjet-printed antennas and carbon nanotubes for gas-detection applications. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 653–656.
[83]
Keat, G.O.; Kefeng, Z.; Grimes, C.A. A wireless, passive carbon nanotube-based gas sensor. IEEE Sens. J. 2002, 2, 82–88.
[84]
Miao, Y.; Yao, Q.; Qiu, N.; Zhang, J. Application research of laser gas detection technology in the analysis of Sulphur hexafluoride. Proceedings of 2010 China International Conference on Electricity Distribution (CICED), Nanjing, China, 13–16 September 2010; pp. 1–3.
[85]
Shi, K.; Burris, J.F.; Newchurch, M.J.; Johnson, S.; Long, S. Differential absorption LIDAR to measure subhourly variation of tropospheric ozone profiles. IEEE Trans. Geosci. Remote 2011, 49, 557–571.
[86]
Refaat, T.F.; Ismail, S.; Koch, G.J.; Rubio, M.; Mack, T.L.; Notari, A.; Collins, J.E.; Lewis, J.; de Young, R.; Yonghoon, C.; et al. Backscatter 2-μm lidar validation for atmospheric CO2 differential absorption lidar applications. IEEE Trans. Geosci. Remote 2011, 49, 572–580.
[87]
Muzikante, I.; Parra, V.; Dobulans, R.; Fonavs, E.; Latvels, J.; Bouvet, M. A novel gas sensor transducer based on phthalocyanine heterojunction devices. Sensors 2007, 7, 2984–2996.
[88]
Baha, H.; Dibi, Z. A novel neural network-based technique for smart gas sensors operating in a dynamic environment. Sensors 2009, 9, 8944–8960.
Abadi, M.H.S.; Hamidon, M.N.; Shaari, A.H.; Abdullah, N.; Misron, N.; Wagiran, R. Characterization of MixedxWO3(1-x)Y2O3 nanoparticle thick film for gas sensing application. Sensors 2010, 10, 5074–5089.
[91]
Kim, K.-M.; Kim, H.-R.; Choi, K.-I.; Kim, H.-J.; Lee, J.-H. Design of highly sensitive C2H5OH sensors using self-assembled ZnO nanostructures. Sensors 2011, 11, 9685–9699.
[92]
Huang, X.; Liu, J.; Pi, Z.; Yu, Z. Detecting pesticide residue by using modulating temperature over a single SnO2-based gas sensor. Sensors 2003, 3, 361–370.
[93]
Hwang, W.-J.; Shin, K.-S.; Roh, J.-H.; Lee, D.-S.; Choa, S.-H. Development of micro-heaters with optimized temperature compensation design for gas sensors. Sensors 2011, 11, 2580–2591.
[94]
Itoh, T.; Matsubara, I.; Kadosaki, M.; Sakai, Y.; Shin, W.; Izu, N.; Nishibori, M. Effects of high-humidity aging on platinum, palladium, and gold loaded tin oxide-Volatile organic compound sensors. Sensors 2010, 10, 6513–6521.
[95]
Yu, B.; Liu, D.; Zhang, T. Fault diagnosis for micro-gas turbine engine sensors via wavelet entropy. Sensors 2011, 11, 9928–9941.
[96]
Bai, H.; Shi, G. Gas sensors based on conducting polymers. Sensors 2007, 7, 267–307.
[97]
Huang, J.; Wan, Q. Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors 2009, 9, 9903–9924.
[98]
Guan, L.; Zhao, J.; Yu, S.; Li, P.; You, Z. Investigation of the frequency shift of a SAD circuit loop and the internal micro-cantilever in a gas sensor. Sensors 2010, 10, 7044–7056.
[99]
Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 2010, 10, 2088–2106.
[100]
Achmann, S.; Hagen, G.; Kita, J.; Malkowsky, I.M.; Kiener, C.; Moos, R. Metal-organic frameworks for sensing applications in the gas phase. Sensors 2009, 9, 1574–1589.
[101]
Chaiyboun, A.; Traute, R.; Kiesewetter, O.; Ahlers, S.; Müller, G.; Doll, T. Modular analytical multicomponent analysis in gas sensor aarrays. Sensors 2006, 6, 270–283.
[102]
Caricato, A.P.; Luches, A.; Rella, R. Nanoparticle thin films for gas sensors prepared by matrix assisted pulsed laser evaporation. Sensors 2009, 9, 2682–2696.
[103]
Choi, K.J.; Jang, H.W. One-dimensional oxide nanostructures as gas-sensing materials: Review and issues. Sensors 2010, 10, 4083–4099.
[104]
Biskupski, D.; Geupel, A.; Wiesner, K.; Fleischer, M.; Moos, R. Platform for a hydrocarbon exhaust gas sensor utilizing a pumping cell and a conductometric sensor. Sensors 2009, 9, 7498–7508.
[105]
Yuan, L.; Hyodo, T.; Shimizu, Y.; Egashira, M. Preparation of mesoporous and/or macroporous SnO2-based powders and their gas-sensing properties as thick film sensors. Sensors 2011, 11, 1261–1276.
[106]
Tamaekong, N.; Liewhiran, C.; Wisitsoraat, A.; Phanichphant, S. Sensing characteristics of flame-spray-made Pt/ZnO thick films as H2 gas sensor. Sensors 2009, 9, 6652–6669.
[107]
Abadi, M.H.S.; Hamidon, M.N.; Shaari, A.H.; Abdullah, N.; Wagiran, R. SnO2/Pt thin film laser ablated gas sensor array. Sensors 2011, 11, 7724–7735.
[108]
Moos, R.; Sahner, K.; Fleischer, M.; Guth, U.; Barsan, N.; Weimar, U. Solid state gas sensor research in Germany- a status report. Sensors 2009, 9, 4323–4365.
[109]
Sun, Y.; Huang, X.; Meng, F.; Liu, J. Study of influencing factors of dynamic measurements based on SnO2 gas sensor. Sensors 2004, 4, 95–104.
[110]
Srivastava, A.; Singh, V.; Dhand, C.; Kaur, M.; Singh, T.; Witte, K.; Scherer, U.W. Study of swift heavy ion modified conducting polymer composites for application as gas sensor. Sensors 2006, 6, 262–269.
[111]
Sadek, K.; Moussa, W. Studying the effect of deposition conditions on the performance and reliability of MEMS gas sensors. Sensors 2007, 7, 319–340.
[112]
Bakrania, S.D.; Wooldridge, M.S. The effects of two thick film deposition methods on tin dioxide gas sensor performance. Sensors 2009, 9, 6853–6868.
Xu, X.; Wang, J.; Long, Y. Zeolite-based materials for gas sensors. Sensors 2006, 6, 1751–1764.
[115]
Tiziana, C.B.; Garrett, D.C.; Lynford, L.G.; Elaine, M.B. Photonic MEMS for NIR in situ gas detection and identification. Proceedings of 2007 IEEE Sensors, Atlanta, GA, USA, 28– 31 October 2007; pp. 1368–1371.
[116]
Korotcenkova, G.; Cho, B.K. Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement. Sens. Actuators B 2011, 156, 527–538.
[117]
Wisitsoraat, A.; Tuantranont; Comini, E.; Sberveglieri; Wlodarski, W. Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films. Thin Solid Films 2009, 517, 2775–2780.
[118]
Yamazoe, N.; Shimanoe, K. Theory of power laws for semiconductor gas sensors. Sens. Actuators B 2002, 128, 566–573.
[119]
Batzill, M.; Diebold, U. The surface and materials science of tin oxide. Prog. Surf. Sci. 2005, 79, 47–154.
[120]
Hoefer, U.; B?ttner, H.; Felske, A.; Kühner, G.; Steiner, K.; Sulz, G. Thin-film SnO2 sensor arrays controlled by variation of contact potential-A suitable tool for chemometric gas mixture analysis in the TLV range. Sens. Actuators B 1997, 44, 429–433.
[121]
Jarmo, K.; Jani, M.; Niina, H.; Teemu, K.; Géza, T.; Maria, S.; Andrey, S.; Jyri-Pekka, M.; Heli, J.; Krisztián, K. Gas sensors based on anodic tungsten oxide. Sens. Actuators B 2011, 153, 293–300.
[122]
Wisitsoraat, A.; Tuantranont, A.; Comini, E.; Sberveglieri, G. Gas sensing properties of CNT-SnO2 nanocomposite thin film prepared by E-beam evaporation. Proceedings of 2007 IEEE Sensors, Atlanta, GA, USA, 28– 31 October 2007; pp. 550–553.
[123]
Hallil, H.; Chebila, F.; Menini, P.; Pons, P.; Aubert, H. Feasibility of wireless gas detection with an FMCW RADAR interrogation of passive RF gas sensor. Proceedings of 2010 IEEE Sensors, Kona, HI, USA, 1– 4 November 2010; pp. 759–762.
[124]
Niskanen, A.J.; Varpula, A.; Utriainen, M.; Natarajan, G.; Cameron, D.C.; Novikov, S.; Airaksinen, V.; Sinkkonen, J.; Franssila, S. Atomic layer deposition of tin dioxide sensing film in microhotplate gas sensors. Sens. Actuators B 2010, 148, 227–232.
[125]
Kwan, T.N.; Boussaid, F.; Bermak, A. A CMOS single-chip gas recognition circuit for metal oxide gas sensor arrays. IEEE Trans. Circuit. Syst. I 2011, 58, 1569–1580.
[126]
Kwon, C.H.; Yun, D.H.; Hong, H.; Kim, S.; Lee, K.; Lim, H.Y.; Yoon, K.H. Multi-layered thick-film gas sensor array for selective sensing by catalytic filtering technology. Sens. Actuators B 2000, 65, 327–330.
[127]
Portnoff, M.A.; Grace, R.G.; Guzman, A.M.; Runco, P.D.; Yannopoulos, L.N. Enhancement of MOS gas sensor selectivity by ‘on-chip’ catalytic filtering. Proceedings of Technical Digest of the 3rd International Meeting on Chemical Sensors, Cleveland, OH, USA, 24–26 September 1990.
[128]
Zeng, W.; Liu, T.; Wang, Z.; Tsukimoto, S.; Saito, M.; Ikuhara, Y. Selective detection of formaldehyde gas using a Cd-Doped TiO2-SnO2 sensor. Sensors 2009, 9, 9029–9038.
[129]
Lee, D.D.; Chung, W.Y.; Choi, M.S.; Baek, J.M. Low-power micro gas sensor. Sens. Actuators B 1996, 33, 147–150.
[130]
Jaegle, N.; Meisinger, T.; Bottner, H.; Muller, G.; Becker, T.; Braunmuhl, C.B. Micromachined thin film SnO2 gas sensors in temperature-pulsed operation mode. Sens. Actuators B 1999, 57, 130–134.
[131]
Comini, E. Metal oxide nano-crystals for gas sensing. Analyt. Chim. Acta 2005, 568, 28–40.
[132]
Gardner, J.W.; Bartlett, P.N. Design of conducting polymer gas sensors: Modeling and experiment. Synth. Met. 1993, 55, 3665–3670.
[133]
Avramov, I.D.; Rapp, M.; Voigt, A.; Stahl, U.; Dirschka, M. Comparative studies on polymer coated SAW and STW resonators for chemical gas sensor applications. Proceedings of 2000 IEE/EIA International Frequency Control Symposium and Exhibition, Kansas City, MO, USA, 7–9 June 2000; pp. 58–65.
[134]
Wong, K.K.L.; Tang, Z.; Sin, J.K.O.; Chan, P.C.H.; Cheung, P.W.; Hiraoka, H. Study on selectivity enhancement of tin dioxide gas sensor using non-conducting polymer membrane. Proceedings of 1995 Hong Kong Electron Devices Meeting, Hong Kong, China, 1 July 1995; pp. 42–45.
Mehdipour, A.; Rosca, I.; Sebak, A.; Trueman, C.W.; Hoa, S.V. Advanced carbon-fiber composite materials for RFID tag antenna applications. Appl. Comput. Electrom. J. 2010, 25, 218–229.
[137]
Seong, J.K. The effect on the gas selectivity of CNT-based gas sensors by binder in SWNT/silane sol solutions. IEEE Sens. J. 2010, 10, 173–177.
[138]
Liu, Y.; Chen, M.; Mohebbi, M.; Wang, M.L.; Dokmeci, M.R. The effect of sequence length on DNA decorated CNT gas sensors. Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; pp. 2156–2159.
[139]
Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.
[140]
The HITRAN Database. Available online: http://www.cfa.harvard.edu/hitran/ (accessed on 16 April 2012).
[141]
Charlton, C.; Temelkuran, B.; Dellemann, G.; Mizaikoff, B. Midinfrared sensors meet nanotechnology: Trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides. Appl. Phys. Lett. 2005, 86, 194102:1–194102:3.
[142]
Liu, K.; Liu, T.; Jiang, J.; Peng, G.; Zhang, H.; Jia, D.; Wang, Y.; Jing, W.; Zhang, Y. Investigation of wavelength modulation and wavelength sweep techniques in intracavity fiber laser for gas detection. J. Light. Technol. 2011, 29, 15–21.
[143]
Ryu, H.Y.; Lee, W.K.; Moon, H.S.; Suh, H.S. Tunable erbium-doped fiber ring laser for applications for infrared absorption spectroscopy. Opt. Commun. 2007, 275, 379–384.
[144]
Liu, K.; Jing, W.; Peng, G.; Zhang, J.; Wang, Y.; Liu, T.; Jia, D.; Zhang, H.; Zhang, Y. Wavelength sweep of intracaivity fiber laser for low concentration gas detection. IEEE Photon. Technol. Lett. 2008, 20, 1515–1517.
[145]
Arunajatesan, V.; Subramaniam, B.; Hutchenson, K.W. In situ FTIR investigations of reverse water gas shift reaction activity at supercritical conditions. Chem. Eng. Sci. 2007, 62, 5062–5069.
[146]
Uotila, J. Comparison of infrared sources for a differential photoacoustic gas detection system. Infrared Phys. Technol. 2007, 51, 122–130.
[147]
Dakin, J.P.; Gunning, M.J.; Chambers, P.; Xin, Z.J. Detection of gases by correlation spectroscopy. Sens. Actuators B 2003, 90, 124–131.
[148]
e2V. Available online: http://www.e2v.com (accessed on 16 April 2012).
[149]
Introduction to Pellistor Gas Sensors. Available online: http://www.e2v.com/e2v./File/sensors_datasheets/Pellistors/pellistor_intro.pdf (accessed on 16 April 2012).
[150]
Tong, M.; Li, J.; Huang, Y.; Dai, X. Effect of electric field to catalytic sensor. Proceedings of 2006 IEEE International Conference on Information Acquisition, Weihai, China, 20– 23 August 2006; pp. 1005–1009.
[151]
Loui, A.; Elhadj, S.; Sirbuly, D.J.; McCall, S.K.; Hart, B.R.; Ratto, T.V. An analytic model of thermal drift in piezoresistive microcantilever sensors. J. Appl. Phys. 2010, 107, 054508:1–054508:13.
[152]
Kim, K.H. Performance characterization of the GC/PFPD for H2S, CH3SH, CH3SCH3, and CH3SSCH3 in air. Atmos. Environ. 2005, 39, 2235–2242.
[153]
van Ruth, S.M. Evaluation of two gas chromatography-olfactometry methods: The detection frequency and perceived intensity method. J. Chromatogr. A 2004, 1054, 33–37.
[154]
Hallewell, G.; Crawford, G.; Mcshurley, D.; Oxoby, G.; Reif, R. A sonar based technique for the ratiometric determination of binary gas mixtures. Nucl. Instrum. Methods Phys. 1988, 264, 219–234.
[155]
Jacobson, S. New developments in ultrasonic gas analysis and flowmetering. Proceedings of IEEE International Ultrasonics Symposium, Beijing, China, 2– 5 November 2008; pp. 508–516.
[156]
Sakai, M.; Torii, S. Apparatus and Method for Measuring Gas Concentration. Japanese Patent JP2004325297, 18 November 2004.
[157]
Hammond, R.H. Ultrasonic Measurement System with Molecular Weight Determination. U.S. Patent 6,216,091, April 2001.
[158]
Schmerr, L.W.; Song, S.J. Ultrasonic Nondestructive Evaluation Systems: Models and Measurements; Springer: New York, NY, USA, 2007.
[159]
Petculescu, A.; Hall, B.; Fraenzle, R.; Phillips, S.; Lueptow, R.M. A prototype acoustic gas sensor based on attenuation. J. Acoust. Soc. Am. 2006, 120, 1779–1782.
[160]
Mylvaganam, S.; Halstensen, M.; Engen, H.; Esbensen, K. Gas density metering in ultrasonic gas flowmeters using impedance measurement and chemometrics. Proceedings of 1999 IEEE Ultrasonics Symposium, Caesars Tahoe, NV, USA, 17– 20 October 1999; pp. 435–439.
[161]
Cros, D.; Guillon, P. Whispering gallery dielectric resonator modes for W-band devices. IEEE Trans. Microw. Theory Techn. 2002, 38, 1667–1674.
[162]
Frye-Mason, G.; Kottenstette, R.J.; Lewis, P.R.; Heller, E.J.; Manginell, R.P.; Adkins, D.R.; Dullock, D.; Martinez, D.; Sasaki, D.; Mowry, C.; et al. Hand-held miniature chemical analysis system (μChemLab) for detection of trace concentrations of gas phase analytes. Proceedings of Micro Total Analysis Systems Workshop, Enschede, The Netherlands, 23–27 October 2000; pp. 140–144.
[163]
Tian, W.C.; Pang, S.W.; Lu, C.J.; Zellers, E.T. Microfabricated preconcentrator-focuser for a microscale gas chromatograph. J. Microelectromech. Syst. 2003, 12, 264–272.
[164]
Yeom, J.; Han, J.; Bae, B.; Shannon, M.A.; Masel, R.I. Design and characterization of micropost-filled reactor to minimize pressure drop while maximizing surface-area-to-volume-ratio. ASME Proceedings of IMECE, Chicago, IL, USA, 5–10 November 2006; pp. 511–516.
[165]
Tang, Y.; Yeom, J.; Han, J.; Bae, B.; Masel, R.I.; Shannon, M.A. A micro-post preconcentrator for a microscale gas chromatography system. Proceedings of Micro Total Analysis Systems Workshop, Boston, MA, USA, 9–13 October 2005.
[166]
Yeom, J.; Oh, I.; Field, C.; Radadia, A.; Ni, Z.; Bae, B.; Han, J.; Masel, R.I.; Shannon, M.A. Enhanced toxic gas detection using a MEMS preconcentrator coated with the metal organic framework absorber. Proceedings of IEEE 21st International Conference on MEMS, Tucson, AZ, USA, 13– 17 January 2008; pp. 232–235.
[167]
Jin, C.G.; Kurzawski, P.; Hierlemann, A.; Zellers, E.T. Evaluation of multitransducer arrays for the determination of organic vapor mixtures. Anal. Chem. 2008, 80, 227–236.
[168]
Loui, A.; Sirbuly, D.J.; Elhadj, S.; McCall, S.K.; Hart, B.R.; Ratto, T.V. Detection and discrimination of pure gases and binary mixtures using a dual-modality microcantilever sensor. Sens. Actuators A 2010, 159, 58–63.
[169]
Wang, Z.; Chen, P.; Yang, X. Application of electronic nose technology in detection of combustible gas. Proceedings of the 8th World Congress on Intelligent Control and Automation (WCICA), Jinan, China, 7–9 July 2010; pp. 6848–6852.
[170]
Cane, C.; Gracia, I.; Gotz, A.; Fonseca, L.; Lora-Tamayo, E.; Horrillo, M.C.; Sayago, I.; Robla, J.I.; Rodrigo, J.; Gutierrez, J. Detection of gases with arrays of micromachined tin oxide gas sensors. Sens. Actuators B 2000, 65, 244–246.
[171]
Sysoev, V.V.; Goschnick, J.; Schneider, T.; Strelcov, E.; Kolmakov, A. A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett. 2007, 7, 3182–3188.
[172]
Kolmakov, A.; Klenov, D.O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 2005, 5, 667–673.
[173]
Chen, J.; Wang, K.; Zhou, W. Vertically aligned ZnO nanorod arrays coated with SnO2/Noble metal nanoparticles for highly sensitive and selective gas detection. IEEE Trans. Nanotechnol 2011, 10, 968–974.