Monitoring of marine ecosystems is essential to identify the parameters that determine their condition. The data derived from the sensors used to monitor them are a fundamental source for the development of mathematical models with which to predict the behaviour of conditions of the water, the sea bed and the living creatures inhabiting it. This paper is intended to explain and illustrate a design and implementation for a new multisensor monitoring buoy system. The system design is based on a number of fundamental requirements that set it apart from other recent proposals: low cost of implementation, the possibility of application in coastal shallow-water marine environments, suitable dimensions for deployment and stability of the sensor system in a shifting environment like the sea bed, and total autonomy of power supply and data recording. The buoy system has successfully performed remote monitoring of temperature and marine pressure (SBE 39 sensor), temperature (MCP9700 sensor) and atmospheric pressure (YOUNG 61302L sensor). The above requirements have been satisfactorily validated by operational trials in a marine environment. The proposed buoy sensor system thus seems to offer a broad range of applications.
References
[1]
de Pascalisa, F.; Pérez-Ruzafa, A.; Gilabert, J.; Marcos, C.; Umgiesser, G. Climate change response of the Mar Menor coastal lagoon (Spain) using a hydrodynamic finite element model. Estuar. Coast. Shelf Sci. 2011, doi:10.1016/j.ecss.2011.12.002.
[2]
Gent, A.E. What Does the “Multi” in Multi-mission Mean? Evolution of the T-AGS 60 Class Oceanographic Survey Ships. Proceedings of the IEEE Conference OCEANS, Providence, RI, USA, 11– 14 September 2000. Volume 2; pp. 949–955.
[3]
Balfour, C.A.; Howarth, M.J.; Smithson, M.J.; Jones, D.S.; Pugh, J. The Use of Ships of Opportunity for Irish Sea Based Oceanographic Measurements. Proceedings of the IEEE Conference OCEANS, Vancouver, BC, Canada, 29 September– 4 October 2007; pp. 1–6.
[4]
Barnes, C.R.; Best, M.M.R.; Bornhold, B.D.; Juniper, S.K.; Pirenne, B.; Phibbs, P. The NEPTUNE Project—A Cabled Ocean Observatory in the NE Pacific: Overview, Challenges and Scientific Objectives for the Installation and Operation of Stage I in Canadian waters. Proceedings of the Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, Tokyo, Japan, 17–20 April 2007; pp. 308–313.
[5]
Cella, U.M.; Shuley, N.; Johnstone, R. Wireless Sensor Networks in Coastal Marine Environments: A Study Case Outcome. Proceedings of the 5th International Workshop on UnderWater Networks, Berkeley, CA, USA, 4–6 November 2009; pp. 1–8.
[6]
Emery, L.; Smith, R.; McNeal, D.; Hughes, B.; Swick, W.; MacMahan, J. Autonomous Collection of River Parameters Using Drifting Buoys. Proceedings of the IEEE Conference OCEANS, Seattle, WA, USA, 20– 23 September 2010; pp. 1–7.
[7]
Kwok, A.; Martinez, S. Deployment of Drifters in a Piecewise-constant Flow Environment. Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15– 17 September 2010; pp. 6584–6589.
[8]
Choi, J.K.; Shiraishi, T.; Tanaka, T.; Kondo, H. Safe operation of an autonomous underwater towed vehicle: Towed force monitoring and control. Autom. Constr. 2011, 20, 1012–1019.
[9]
Leach, J.H.J. The Development of a Towed Vehicle for Optical Mapping in Shallow Water. Proceedings of the IEEE Conference OCEANS, Nice, France, 28 September– 1 October 1998. Volume 3; pp. 1455–1458.
[10]
Kaminski, C.; Crees, T.; Ferguson, J.; Forrest, A.; Williams, J.; Hopkin, D.; Heard, G. 12 Days under Ice—An Historic AUV Deployment in the Canadian High Arctic. Proceedings of the 2010 IEEE/OES Autonomous Underwater Vehicles (AUV), Monterey, CA, USA, 1– 3 September 2010.
[11]
Masmitja, I.; Masmitja, G.; Gonzalez, J.; Shariat-Panahi, S.; Gomariz, S. Development of a control system for an Autonomous Underwater Vehicle. Proceedings of the 2010 IEEE/OES Autonomous Underwater Vehicles (AUV), Monterey, CA, USA, 1– 3 September 2010.
[12]
Meinecke, G.; Ratmeyer, V.; Renken, J. HYBRID-ROV—Development of a New Underwater Vehicle for High-risk Areas. Proceedings of the IEEE Conference OCEANS, Kona, HI, USA, 19– 22 September 2011; pp. 1–7.
[13]
Kawaguchi, K.; Araki, E.; Kaneko, S.; Nishida, T.; Komine, T. Subsea Engineering ROV and Seafloor Observatory Construction. Proceedings of the 2011 IEEE Symposium on and Workshop on Scientific Use of Submarine Cables and Related Technologies (SSC), Underwater Technology (UT), Tokyo, Japan, 5– 8 April 2011; pp. 1–6.
[14]
Ferguson, B.G.; Lo, K.W.; Rodgers, J.D. Sensing the Underwater Acoustic Environment with a Single Hydrophone Onboard an Undersea Glider. Proceedings of the IEEE Conference OCEANS, Seattle, WA, USA, 20– 23 September 2010; pp. 1–5.
[15]
Akyildiz, I.F.; Pompili, D.; Melodia, T. Underwater acoustic sensor networks: Research challenges. Ad Hoc Netw. 2005, 3, 257–279.
[16]
Font, J.; Camps, A.; Borges, A.; Martín-Neira, M.; Boutin, J.; Reul, N.; Kerr, Y.H.; Hahne, A.; Mecklenburg, S. SMOS: The challenging sea surface salinity measurement from space. Proc. IEEE 2010, 98, 649–665.
Albaladejo, C.; Sánchez, P.; Iborra, A.; Soto, F.; López, J.A.; Torres, R. Wireless sensor networks for oceanographic monitoring: A systematic review. Sensors 2010, 7, 6948–6968.
[19]
Jiang, P.; Xia, H.; He, Z.; Wang, Z. Design of a water environment monitoring system based on wireless sensor networks. Sensors 2009, 9, 6411–6434.
[20]
Yang, X.; Ong, K.G.; Dreschel, W.R.; Zeng, K.; Mungle, C.S.; Grimes, C.A. Design of a wireless sensor network for long-term, in-situ monitoring of an aqueous environment. Sensors 2002, 2, 455–472.
[21]
Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: A survey. Comput. Netw. 2002, 38, 393–422.
[22]
Buratti, C.; Conti, A.; Dardari, D.; Verdone, R. An overview on wireless sensor networks technology and evolution. Sensors 2009, 9, 6869–6896.
[23]
Hugo, D.; Howell, B.; D'Este, C.; Timms, G.; Sharman, C.; de Souza, P.; Allen, S. Low-cost Marine Monitoring: From Sensors to Information Delivery. Proceedings of OCEANS, Kona, HI, USA, 19–22 September 2011; pp. 1–7.
[24]
Sieber, A.; Markert, J.; Wogerer, C.; Cocco, M.; Wagner, M.F. Low power wireless buoy platform for environmental monitoring. Lect. Notes Electr. Eng. 2010, 64, 25–42.
[25]
Carral, L.; Fraguela, J.A.; González, G.; Rodríguez, M.J.; Rivera, M.; Carral, J.C. Algoritmo Para la Preparación y Mantenimiento de la Condición de Fondeo en Yates. Proceedings of the XXI Congreso Panamericano de Ingeniería Naval, Montevideo, Uruguay, 18–22 October 2009; pp. 1–25.
[26]
White, F.M. Fluid Mechanics; Mcgraw-Hill: New York, NY, USA, 1998.
[27]
López, J.A.; Soto, F.; Sánchez, P.; Iborra, A.; Suardiaz, J.; Vera, J.A. Development of a sensor node for precision horticulture. Sensors 2009, 9, 3240–3255.
[28]
Gislason, D. ZigBee Wireless Networking; Elsevier Inc.: Burlington, MA, USA, 2008.