Three A3B porphyrins with mixed carboxy-, phenoxy-, pyridyl- and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10?7–1 × 10?1 M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples.
References
[1]
Galhardo, C.X.; Masini, J.C. Sequential injection analysis as a tool for in situ monitoring of Fe(II), Fe(III), NO3? and NO2? in natural and waste waters. Anal. Chim. Acta. 2001, 438, 39–48.
[2]
Kompany-Zareh, M.; Mansourian, M.; Ravaee, F. Simple method for colorimetric spot-test quantitative analysis of Fe(III) using a computer controlled hand-scanner. Anal. Chim. Acta 2002, 471, 97–104.
[3]
Hosseini, M.S.; Raissi, H.; Madarshahian, S. Synthesis and application of a new chelating resin functionalized with 2,3-dihydroxy benzoic acid for Fe(III) determination in water samples by flame atomic absorption spectrometry. React. Funct. Polym. 2006, 66, 1539–1545.
[4]
Cui, Y.; Chang, X.; Zhu, X.; Jiang, N.; Hu, Z.; Lian, N. Nanometer SiO2 modified with 5-sulfosalicylic acid as selective solid-phase extractant for Fe(III) determination by ICP-AES from biological and natural water samples. Microchem. J. 2007, 86, 23–28.
[5]
Mashhadizadeh, M.H.; Shoaei, I.S.; Monadi, N. A novel ion-selective membrane potentiometric sensor for direct determination of Fe(III) in the presence of Fe(II). Talanta 2004, 64, 1048–1052.
[6]
Mollagh, M.G.; Taher, M.A.; Ahmadi, A. PVC membrane and coated graphite potentiometric sensors based on 1-phenyl-3-pyridin-2-yl-thiourea for selective determination of iron(III). Electrochim. Acta 2010, 55, 6724–6730.
[7]
Gupta, V.K.; Jain, A.K.; Agarwal, S.; Maheshwari, G. An iron(III) ion-selectivesensor based on a μ-bis(tridentate) ligand. Talanta 2007, 71, 1964–1968.
[8]
Babakhaniana, A.; Gholivanda, M.B.; Mohammadib, M.; Khodadadianc, M.; Shockravib, A.; Abbaszadehb, M.; Ghanbarya, A. Fabrication of a novel iron(III)-PVC membrane sensor based on a new 1,1′-(iminobis(methan-1-yl-1-ylidene))dinaphthalen-2-ol synthetic ionophore for direct and indirect determination of free iron species in some biological and non-biological samples. J. Haz. Mat. 2010, 177, 159–166.
[9]
Gupta, V.K.; Sethi, B.; Upadhyay, N.; Kumar, S.; Singh, R.; Singh, L.P. Iron (III) selective electrode based on S-methyl N-(methylcarbamoyloxy) thioacetimidate as a sensing material. Int. J. Electrochem. Sci. 2011, 6, 650–663.
[10]
Khun, K.; Ibupoto, Z.H.; Ali, S.M.U.; Chey, C.O.; Nur, O.; Willander, M. Iron ion sensor based on functionalized ZnO nanorods. Electroanalysis 2012, 24, 521–528.
[11]
Zamania, H.A.; Ganjali, M.R.; Behmadi, H.; Behnajady, M.A. Fabrication of an iron(III) PVC-membrane sensor based on bis-benzilthiocarbohydrazide as a selective sensing material. Mater. Sci. Eng. 2009, 29, 1535–1539.
[12]
Fakhari, A.R.; Alaghemand, M.; Shamsipur, M. Iron(III)-selective membrane potentiometric sensor based on 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin. Anal. Lett. 2001, 34, 1097–1106.
[13]
Lee, C.K.; Rhee, K.-I. Reductive leaching of cathodic active materials from lithium ion battery wastes. Hydrometallurgy 2003, 68, 5–10.
[14]
Ismael, M.R.C.; Carvalho, J.M.R. Iron recovery from sulphate leach liquors in zinc hydrometallurgy. Miner. Eng. 2003, 16, 31–39.
[15]
Fagadar-Cosma, E.; Fagadar-Cosma, G.; Vasile, M.; Enache, C. Synthesis, spectroscopic and self-assembling characterization of novel photoactive mixed aryl-substituted porphyrin. Curr. Org. Chem. 2012, 16, 931–941.
[16]
Bakar, M.B.; Oelgemoller, M.; Senge, M.O. Lead structures for applications in photodynamic therapy. Part 2: Synthetic studies for photo-triggered release systems of bioconjugate porphyrin photosensitizers. Tetrahedron 2009, 65, 7064–7078.
[17]
Adler, A.D.; Longo, F.R.; Kampas, F.; Kim, J. Preparation of metalloporphyrins. J. Inorg. Nucl. Chem. 1970, 32, 2443–2445.
[18]
Fagadar-Cosma, E.; Cseh, L.; Badea, V.; Fagadar-Cosma, G.; Vlascici, D. Combinatorial synthesis and characterization of new asymmetric porphyrins as potential photosensitizers in photodynamic therapy. Comb. Chem. High Throughput Screen. 2007, 10, 466–472.
[19]
Balaz, M.; Holmes, A.E.; Benedetti, M.; Proni, G.; Berova, N. Porphyrin substituted phosphoramidites: New building blocks for porphyrin-oligonucleotide syntheses. Bioorgan. Med. Chem. 2005, 13, 2413–2421.
[20]
Granata, G.; Moscardini, E.; Pagnanelli, F.; Trabucco, F.; Toro, L. Product recovery from Li-ion battery wastes coming from an industrial pretratment plant: Lab scale tests and process simulations. J. Power Sources 2012, 206, 393–401.
[21]
Gupta, V.K.; Jain, A.K.; Maheshwari, G.; Lang, H.; Ishtaiwi, Z. Copper(II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sens. Actuators B 2006, 117, 99–106.
[22]
Gupta, V.K.; Chauhan, D.K.; Saini, V.K.; Agarwal, S.; Antonijevic, M.M.; Lang, H. A porphyrin based potentiometric sensor for Zn2+ determination. Sensors 2003, 3, 223–235.
[23]
Vlascici, D.; F?g?dar-Cosma, E.; Bizerea Spiridon, O. A new composition for Co(II)-porphyrin-based membranes used in thiocyanate-selective electrodes. Sensors 2006, 6, 892–900.
[24]
Vlascici, D.; Bizerea Spiridon, O.; F?g?dar-Cosma, E. Thiocyanate-selective electrode based on rhodium porphyrin derivatives. J. Optoelectron. Adv. Mater. 2006, 8, 883–887.
[25]
Vlascici, D.; Fagadar Cosma, E.; Pica, E.M.; Cosma, V.; Bizerea, O.; Mihailescu, G.; Olenic, L. Free base porphyrins as ionophores for heavy metal sensors. Sensors 2008, 8, 4995–5004.
[26]
Vlascici, D.; Pruneanu, S.; Olenic, L.; Pogacean, F.; Ostafe, V.; Chiriac, V.; Pica, E.M.; Bolundut, L.C.; Nica, L.; Fagadar Cosma, E. Manganese(III) porphyrins based potentiometric sensors for diclofenac assay in pharmaceutical preparations. Sensors 2010, 10, 8850–8864.
[27]
de Bievre, P.; Dybkaer, R.; Fajgelj, A.; Hibbert, D.B. Metrological traceability of measurements results in chemistry: Concepts and implementation (IUPAC Technical report). Pure Appl. Chem. 2011, 83, 1873–1935.
[28]
Umezawa, Y.; Buhlmann, P.; Umezawa, K.; Tohda, K. Potentiometric selectivity coefficients of ion-selective electrodes. Part I Inorganic cations. Pure Appl. Chem. 2000, 72, 1851–2082.