全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

A Semantic Autonomous Video Surveillance System for Dense Camera Networks in Smart Cities

DOI: 10.3390/s120810407

Keywords: smart sensors, surveillance, semantics, safety and security

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a proposal of an intelligent video surveillance system able to detect and identify abnormal and alarming situations by analyzing object movement. The system is designed to minimize video processing and transmission, thus allowing a large number of cameras to be deployed on the system, and therefore making it suitable for its usage as an integrated safety and security solution in Smart Cities. Alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. This means that the system employs a high-level conceptual language easy to understand for human operators, capable of raising enriched alarms with descriptions of what is happening on the image, and to automate reactions to them such as alerting the appropriate emergency services using the Smart City safety network.

References

[1]  Baladrón, C.; Cadenas, A.; Aguiar, J.; Carro, B.; Sánchez-Esguevillas, A. Multi-Level context management and inference framework for smart telecommunication services. J. Univers. Comput. Sci. 2010, 16, 1973–1991.
[2]  DataMonitor. Global Digital Video Surveillance Markets: Finding Future Opportunities as Analog Makes Way for Digital; Market Research Report, Available online: http://www.datamonitor.com/Products/Free/Report/DMTC1014/010DMTC1014.pdf (accessed on 16 July 2012).
[3]  Bodsky, T.; Cohen, R.; Cohen-Solal, E.; Gutta, S.; Lyons, D.; Philomin, V.; Trajkovic, M. Visual Surveillance in Retail Stores and in the Home. In Advanced Video-Based Surveillance Systems; Kluwer Academic Publishers: Boston, MA, USA, 2001; Volume 4, pp. 50–61.
[4]  Ferryman, J.M.; Maybank, S.J.; Worrall, A.D. Visual Surveillance for Moving Vehicles. Proceedings of the 1998 IEEE Workshop on Visual Surveillance, Bombay, Indian, 2 January 1998; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. Volume 37; pp. 73–80.
[5]  Foresti, G.L.; Micheloni, C.; Snidaro, L.; Remagnino, P.; Ellis, T. Active video-based surveillance system: The low-level image and video processing techniques needed for implementation. IEEE Signal Proc. 2005, 22, 25–37.
[6]  Hu, W.; Tan, T.; Wang, L.; Maybank, S. A survey on visual surveillance of object motion and behaviors. Trans. Syst. Man Cybern. Appl. Rev. 2004, 34, 334–352.
[7]  Rota, N.; Thonnat, M. Video Sequence Interpretation for Visual Surveillance. Proceedings of the Third IEEE International Workshop on Visual Surveillance, Dublin, Ireland; 2000; pp. 59–68.
[8]  Lloret, J.; García, M.; Bri, D.; Sendra, S. A Wireless sensor network deployment for rural and forest fire detection and verification. Sensors 2009, 9, 8722–8747.
[9]  Sivic, J.; Russell, B.; Efros, A.; Zisserman, A.; Freeman, W. Discovering Objects and Their Location in Images. Proceedings of the ICCV 2005 Tenth IEEE International Conference on Computer Vision, Beijing, China, 17–21 October 2005. Volume 1; pp. 370–377.
[10]  Craven, M.; Kumilien, J. Constructing Biological Knowledge Bases by Extracting Information from Text Sources. Proceedings of the 7th International Conference on Intelligent Systems for Molecular Biology (ISMB-99), Heidelberg, Germany, 6–10 August 1999; pp. 77–86.
[11]  Torralba, A.; Murphy, K.P.; Freeman, W.T.; Rubin, M.A. Context-Based Vision System for Place and Object Recognition. Proceedings of the Ninth IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003. Volume 1; pp. 273–280.
[12]  Cristani, M.; Cuel, R. A survey on ontology creation methodologies. Int. J. Semant. Web Inf. Syst. 2005, 1, 49–69.
[13]  Vargas-Vera, M.; Domingue, J.; Kalfoglou, Y.; Motta, E.; Buckingham Shum, S. Template-Driven Information Extraction for Populating Ontologies. Proceedings of the IJCAI'01 Workshop on Ontology Learning, Seattle, WA, USA, 4 August 2001.
[14]  Fensel, D. Ontologies: A Silverbullet for Knowledge Management and Electronic Commerce; Springer: Heidelberg, Germany, 2000.
[15]  Buitelaar, P.; Cimiano, P.; Magnini, B. Ontology Learning from Text: Methods, Evaluation and Applications. In Frontiers in Artificial Intelligence and Applications; IOS Press: Lansdale, PA, USA, 2005; p. 123.
[16]  Whitehouse, K.; Liu, J.; Zhao, F. Semantic Streams: A Framework for Composable Inference over Sensor Data. Lect. Notes Comput. Sci. 2006, 3868/2006, 5–20.
[17]  Arslan, U.; Emin D?nderler, M.; Saykol, E.; Ulusoy, ?.; Güdükbay, U. A Semi-Automatic Semantic Annotation Tool for Video Databases. Proceedings of the Workshop on Multimedia Semantics, (SOFSEM 2002), Milovy, Czech Republic, 22–29 November 2002; pp. 1–10.
[18]  Tan, T.N.; Sullivan, G.D.; Baker, K.D. Model-based localization and recognition of road vehicles. Int. J. Comput. Vis. 1998, 29, 22–25.
[19]  Serre, T.; Wolf, L.; Bileschi, S.; Riesenhuber, M.; Poggio, T. Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 411–426.
[20]  Nakamura, E.F.; Loureiro, A.A.F.; Frery, A.C. Information fusion for Wireless Sensor Networks: Methods, models and classifications. ACM Comput. Surv. 2007, 39, doi:10.1145/1267070.1267073.
[21]  Friedlander, D.; Poha, S. Semantic information fusion for coordinated signal processing in mobile sensor networks. Int. J. High Perf. Comput. Appl. 2002, 16, 235–241.
[22]  Makris, D.; Ellis, T. Learning semantic scene models from observing activity in visual surveillance. IEEE Trans. Syst. Man Cybern. 2005, 35, 397–408.
[23]  Piciarelli, C.; Foresti, G.L. On-line trajectory clustering for anomalous events detection. Pattern Recognit. Lett. 2006, 27, 1835–1842.
[24]  Morris, B.; Trivedi, M.M. Learning Trajectory Patterns by Clustering: Experimental Studies and Comparative Evaluation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 312–319.
[25]  Faure, D.; N'Edellec, C. ASIUM: Learning Sub-Categorization Frames and Restrictions of Selection. Proceedings of the 10th Conference on Machine Learning (ECML 98): Workshop on Text Mining, Chemnitz, Germany, 21–24 April 1998.
[26]  Tanev, H.; Magnini, B. Weakly Supervised Approaches for Ontology Population. Proceedings of the 11st Conference of the European Chapter of the Association for Computational Linguistics (EACL 2006), Trento, Italy, 3–7 April 2006; pp. 3–7.
[27]  Cimiano, P.; V?lker, J. Towards large-scale, open-domain and ontology-based named entity classification. Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2005), Borovets, Bulgaria, 21–23 September 2005; pp. 166–172.
[28]  Mallot, H.A.; Biilthoff, H.H.; Little, J.J.; Bohrer, S. Inverse perspective mapping simplifies optical flow computation and obstacle detection. Biol. Cybern. 1991, 64, 177–185.
[29]  Ghosh, A.; Wolter, D.R.; Andrews, J.G.; Chen, R. Broadband wireless access with WiMax/802.16: Current performance benchmarks and future potential. Commun. Mag. IEEE. 2005, 43, 129–136.
[30]  Makris, D.; Ellis, T. Path detection in video surveillance. Image Vis. Comput. 2002, 20, 895–903.
[31]  Morris, B.T.; Trivedi, M.M. A survey of vision-based trajectory learning and analysis for surveillance. IEEE Trans. Circuits Syst. Video Technol. 2008, 18, 1114–1127.
[32]  Makris, D.; Ellis, T. Automatic Learning of an Activity-Based semantic Scene Model. Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance, Miami, FL, USA, 21–22 July 2003; pp. 183–188.
[33]  Wang, X.; Tieu, K.; Grimson, E. Learning semantic scene models by trajectory analysis. Lect. Notes Comput. Sci. 2006, 3953/2006, 110–123.
[34]  Zhang, Z.; Huang, K.; Tan, T. Comparison of Similarity Measures for Trajectory Clustering in Outdoor Surveillance Scenes. Proceedings of the 18th International Conference on Pattern Recognition, Hong Kong, China, 20–24 August 2006. Volume 3; pp. 1135–1138.
[35]  Gustafson, D.E.; Kessel, W.C. Fuzzy Clustering with a Fuzzy Covariance Matrix. Proceedings of the 1978 IEEE Conference on Decision and Control Including the 17th Symposium on Adaptive Processes, San Diego, CA, USA, 10–12 January 1978; pp. 761–766.
[36]  Wang, X.; Ma, X.; Grimson, E. Unsupervised Activity Perception in Crowded and Complicated scenes Using Hierarchical Bayesian Models. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 539–555.
[37]  Hu, W.; Tan, T.; Wang, L.; Maybank, S. A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man Cybern. Appl. Rev. 2004, 34, 334–352.
[38]  Raman, R.M.; Chandran, M.S.; Vinotha, S.R. Motion Based Security Alarming System for Video Surveillance. Proceedings of the International Conference on Computational Techniques and Artificial Intelligence (ICCTAI'2011), Pattaya, Thailand, 7–8 October 2011.
[39]  McKenna, S.J.; Nait Charif, H. Summarising contextual activity and detecting unusual inactivity in a supportive home environment. Pattern Anal. Appl. 2004, 7, 386–401.
[40]  Tsow, F.; Forzani, E.; Rai, A.; Wang, R.; Tsui, R.; Mastroianni, S.; Knobbe, C.; Gandolfi, A.J.; Tao, N.J. A wearable and wireless sensor system for real-time monitoring of toxic environmental volatile organic compounds. Sens. J. IEEE 2009, 9, 1734–1740.
[41]  Yu, X. Approaches and Principles of Fall Detection for Elderly and Patient. Proceedings of the 10th International Conference on e-health Networking, Applications and Services, Singapore, 7–9 July 2008; pp. 42–47.
[42]  Tung, F.; Zelek, J.S.; Clausi, D.A. Goal-based trajectory analysis for unusual behaviour detection in intelligent surveillance. Image Vis. Comput. 2010, 29, 230–240.
[43]  Zhang, C.; Chen, X.; Zhou, L.; Chen, W. Semantic retrieval of events from indoor surveillance video databases. Pattern Recognit. Lett. 2009, 30, 1067–1076.
[44]  Chen, X.; Zhang, C. An Interactive Semantic Video Mining and Retrieval Platform—Application in Transportation Surveillance Video for Incident. Proceedings of the 2006 IEEE International Conference on Data Mining (ICDM), Hong Kong, China, 18–22 December 2006; pp. 129–138.
[45]  Marraud, D.; Cepas, B.; Reithler, L. Semantic Browsing of Video Surveillance Databasesthrough Online Generic Indexing. Proceedings of the Third ACM/IEEE International Conference on Distributed Smart Cameras, Como, Italy, 30 August–2 September 2009; pp. 1–8.
[46]  Francois, A.R.; Nevatia, R.; Hobbs, J.; Bolles, R.C. VERL: An ontology framework for representing and annotating video events. IEEE MultiMed. 2005, 12, 76–86.
[47]  Poppe, C.; Martens, G.; de Potter, P.; de Walle, R.V. Semantic web technologies for video surveillance metadata. Multimed. Tools Appl. 2012, 56, 439–467.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133