全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

A Hybrid TOA-Fingerprinting Based Localization of Mobile Nodes Using UWB Signaling for Non Line-Of-Sight Conditions

DOI: 10.3390/s120811187

Keywords: UWB signaling, node localization, target tracking, fingerprinting, TOA, NLOS

Full-Text   Cite this paper   Add to My Lib

Abstract:

Recently, Impulse Radio Ultra Wideband (IR-UWB) signaling has become popular for providing precise location accuracy for mobile and wireless sensor node localization in the indoor environment due to its large bandwidth and high time resolution while providing ultra-high transmission capacity. However, the Non-line-of-sight (NLOS) error mitigation has considerable importance in localization of wireless nodes. In order to mitigate NLOS errors in indoor localization this paper proposes and investigates a novel approach which creates a hybrid combination of channel impulse response (CIR)-based fingerprinting (FP) positioning and an iterative Time of Arrival (TOA) real time positioning method using Ultra Wideband (UWB) signaling. Besides, to reduce the calculation complexities in FP method, this paper also introduces a unique idea for the arrangement of reference nodes (or tags) to create a fingerprinting database. The simulation results confirm that the proposed hybrid method yields better positioning accuracies and is much more robust in NLOS error mitigation than TOA only and FP only and a conventional iterative positioning method.

References

[1]  Zhang, J.; Orlik, P.V.; Sahinoglu, Z.; Molisch, A.F.; Kinney, P. UWB systems for wireless sensor networks. Proc. IEEE. 2009, 97, 313–331, doi:10.1109/JPROC.2008.2008786.
[2]  Marano, S.; Gifford, W.M.; Wymeersch, H.; Win, M.Z. NLOS Identification and mitigation for localization based on UWB experimental data. IEEE J. Sel. Areas Commun. 2010, 28, 1026–1035, doi:10.1109/JSAC.2010.100907.
[3]  Jin, Y.; Soh, W.-S.; Wong, W.C. Indoor localization with channel impulse response based fingerprint and nonparametric regression. IEEE Trans. Wirel. Commun. 2010, 9, 1120–1127, doi:10.1109/TWC.2010.03.090197.
[4]  Mensing, C.; Plass, S. Positioning Algorithms for Cellular Networks Using TDOA. Proceddings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 14– 19 May 2006; pp. 1–4.
[5]  Xiong, J-Y.; Wang, W.; Zhu, Z.-L. A New TDOA Location Technique Based on Taylor Series Expansion in Cellular Networks. Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies, Chengdu, China, 27–29 August 2003; pp. 378–381.
[6]  Akbarov, D.; Choi, H.; Park, Y.; Han, G.; Moon, J. Hybrid Pattern Matching/TDOA Positioning Method for CDMA Networks. Proceeding of the 4th Workshop on Positioning, Navigation and Communication, Hannover, Germany, 22– 22 March 2007; pp. 199–203.
[7]  Hashemi, H. The indoor radio propagation channel. Proc. IEEE. 1993, 81, 943–968, doi:10.1109/5.231342.
[8]  McKown, J.W.; Hamilton, R.L. Ray tracing as a design tool for radio networks. IEEE Netw. Mag. 1991, 5, 27–30, doi:10.1109/65.103807.
[9]  Schaubach, K.R.; Davis, N.J.; Rappaport, T.S. A Ray Tracing Method for Predicting Path Loss and Delay Spread in Microcellular Environments. Proceedings of the 42nd IEEE Vehicular Technology Conference, Denver, CO, USA, 10– 13 May 1992; pp. 932–935.
[10]  Diskin, J.; Brennan, C. Accelerated Ray-Tracing for Indoor Ultra-Wideband Propagation Modeling. Proceedings of the 65th IEEE Vehicular Technology Conference, Dublin, Ireland, 22– 25 April 2007; pp. 418–422.
[11]  Turin, G.L.; Clapp, F.D.; Johnston, T.L.; Fine, S.B.; Lavry, D. A statistical model of urban multipath propagation. IEEE Trans. Veh. Technol. 1972, 21, 1–9, doi:10.1109/T-VT.1972.23492.
[12]  Malik, W.Q.; Allen, B. Wireless Sensor Positioning with Ultra Wideband Fingerprinting. Proceeding of the 1st European Conference on Antennas and Propagation, Nice, France, 6– 10 November 2006; pp. 1–5.
[13]  Alsindi, N.A.; Alavin, B.; Pahlavan, K. Measurement and modeling of Ultrawideband TOA-based ranging in indoor multipath environments. IEEE Trans. Veh. Technol. 2009, 58, 1046–1058, doi:10.1109/TVT.2008.926071.
[14]  Dashti, M.; Ghoraishi, M.; Takada, J. High-Precision Time-of-Arrival Estimation for UWB Localizers in Indoor Multipath Channels. In Novel Applications of the UWB Technologies; Lembrikov, B.I., Ed.; InTech: Rijeka, Croatia, 2011; pp. 397–422.
[15]  Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441, doi:10.1137/0111030.
[16]  Nocedal, J.; Wright, S.J. Numerical Optimization; Springer-Verlag Inc.: New York, NY, USA, 1999.
[17]  Ranganathan, A. The Levenberg-Marquardt Algorithm, Honda Research Institute, 8 June 2004. Available online: http://www.ananth.in/docs/lmtut.pdf (accessed on 15 June 2012).
[18]  Madsen, K.; Nielsen, H.B.; Tingleff, O. Methods for Non-Linear Least Squares Problems, 2nd ed. ed.; Lecture notes, Informatics and Mathematical Modelling, Technical University of Denmark: Lyngby, Denmark, 2004; p. 25.
[19]  Kabir, M.H.; Kohno, R. A Hybrid Positioning Approach by UWB Radio Communication Systems for Non Line-Of-Sight Conditions. Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM 2011), Houston, TX, USA, 5– 9 December 2011; pp. 1–5.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133