全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Using a Communication Model to Collect Measurement Data through Mobile Devices

DOI: 10.3390/s120709253

Keywords: communication model, data transmission, sensors integration, mobile devices

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wireless systems and services have undergone remarkable development since the first mobile phone system was introduced in the early 1980s. The use of sensors in an Ambient Intelligence approach is a great solution in a medical environment. We define a communication architecture to facilitate the information transfer between all connected devices. This model is based in layers to allow the collection of measurement data to be used in our framework monitoring architecture. An overlay-based solution is built between network elements in order to provide an efficient and highly functional communication platform that allows the connection of a wide variety of devices and technologies, and serves also to perform additional functions such as the possibility to perform some processing in the network that may help to improve overall performance.

References

[1]  Georgia Institute of Technology. AWARE HOME, Available online: http://awarehome.imtc.gatech.edu/ (accessed on 10 December 2011).
[2]  Kientz, J.A.; Patel, S.N.; Jones, B.; Price, E.; Mynatt, E.D.; Abowd, G.D. The Georgia Tech Aware Home. Proceedings of CHI' 08 Extended Abstracts on Human Factors in Computing Systems, Florence, Italy, 5–10 April 2008; pp. 3675–3680.
[3]  Choi, M.; Jones, B.D. Remote Home Health Monitoring Management Using Smartphones, Poster Presented at mHealth Summit 2010, Washington DC, USA, 8– 10 November 2010.
[4]  University of Virginia. Smart IN-HOME Monitoring System. Available online: http://marc.med.virginia.edu/projectssmarthomemonitor.html (accessed on 5 November 2011).
[5]  Intel Corporation. HealthCare, Available online: http://www.intel.com/about/companyinfo/healthcare/people/research/approach.htm?wapkw=%28alzheimer%29# (accessed on 10 November 2011).
[6]  University of Roschester. Center of Future Health. Available online: http://www.urmc.rochester.edu/future-health/ (accessed on 15 December 2011).
[7]  López-de-Ipina, D.; Blanco, S.; Laiseca, X.; Díaz-de-Sarralde, L. Elder Care: An Interactive TV-BASED Ambient Assisted Living Platform. In Activity Recognition in Pervasive Intelligent Environments; Chen, L., Nugent, C.D., Biswas, J., Hoey, J., Eds.; Atlantis Press: Paris, France, 2010; pp. 111–125.
[8]  Fuentes, L.; Jiménez, D. An Aspect-Oriented Ambient Intelligence Middleware Platform. Proceedings of the 3rd International Workshop on Middleware for Pervasive and Ad-Hoc Computing, Grenoble, France, 28 November–2 December 2005; pp. 1–8.
[9]  Aarts, E.; Roovers, R. IC Design Challenges for Ambient Intelligence. Proceedings of the Conference on Design, Automation and Test in Europe, Munich, Germany, 3–7 March 2003. Volume 1; pp. 2–7.
[10]  Basten, T.; Benini, L.; Chandrakasan, A.; Lindwer, M.; Liu, J.; Min, R.; Zhao, F. Scaling into Ambient Intelligence. Proceedings of the Conference on Design, Automation and Test in Europe, Munich, Germany, 3–7 March 2003. Volume 1; p. 10076.
[11]  Iglesias, R.; El Saddik, A. A Glimpse of Multimedia Ambient Intelligence. Proceedings of the 16th ACM International Conference on Multimedia, Vancouver, BC, Canada, 26–31 October 2008; pp. 1159–1160.
[12]  Herrmann, K. Self-organized service placement in ambient intelligence environments. ACM Trans. Auton. Adapt. Syst. 2010, 5, 1–39.
[13]  Urzaiz, G.; Villa, D.; Villanueva, F.; Moya, F.; Rincon, F.; Lopez, J.C.; Munoz, L.A. A Novel Communication Platform to Enable the Collaboration of Autonomous Underwater Vehicles. Proceedings of the 2009 International Conference on Wireless Networks (ICWN '09), Las Vegas, NV, USA, 13–16 July 2009.
[14]  Hervás, R.; Bravo, J. Towards the ubiquitous visualization: Adaptative user-interfaces based on the Semantic Web. Interact. Comput. 2011, 23, 40–56.
[15]  Hervás, R.; Bravo, J.; Fontecha, J. A context model based on ontological languages: A proposal for information visualization. J. Univers. Comput. Sci. 2010, 16, 1539–1555.
[16]  Cheun, D.W.; Lee, H.M.; Kim, S.D. An Effective Framework for Monitoring Service-Based Mobile Applications. Proceedings of 2010 IEEE 7th International Conference on e-Business Engineering, Shanghai, China, 10– 12 November 2010.
[17]  Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, R.; Little, R.; Nord, R.; Stafford, J. Documenting Software Architecture: Views and Beyond; Addison Wesley: Boston, MA, USA, 2002.
[18]  Barbarán, J.; Díaz, M.; Esteve, I.; Rubio, B. RadMote: A mobile framework for radiation monitoring in nuclear power plants. Int. J. Electron. Circuit. Syst. 2007, 1, 104–109.
[19]  Crossbow-Technology-Inc. The smart sensors company. Available online: http://www.xbow.com (accessed on 12 December 2011).
[20]  Villa, D.; Villanueva, F.; Moya, F.; Urzaiz, G.; Rincon, F.; Lopez, J.C. Object Oriented Multi-Layer Routing with Application on Wireless Sensor-Actuator Networks. Proceedings of 16th IEEE International Conference on Networks (ICON2008), Nueva Delhi, India, 12– 14 December 2008.
[21]  Urzaiz, G.; Villa, D.; Moya, F.; Lopez, J.C. Process-in-Network: Optimizing Information Processing in Heterogeneous Networks. Proceedings of 5th International Symposium on Ubiquitous Computing and Ambient Intelligence (UCAmI 2011), Riviera Maya, Mexico, 5–9 December 2011.
[22]  Hervás, R.; Bravo, J.; Fontecha, J. Awareness marks: Adaptative services through user interactions with augmented objects. Pers. Ubiquitous Comput. 2011, 15, 409–418.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133