Sulfur dioxide (SO2) is important in the winemaking process as it aids in preventing microbial growth and the oxidation of wine. These processes and others consume the SO2 over time, resulting in wines with little SO2 protection. Furthermore, SO2 and sulfiting agents are known to be allergens to many individuals and for that reason their levels need to be monitored and regulated in final wine products. Many of the current techniques for monitoring SO2 in wine require the SO2 to be separated from the wine prior to analysis. This investigation demonstrates a technique capable of measuring free sulfite concentrations in low volume liquid samples in white wine. This approach adapts a known colorimetric reaction to a suspended core optical fiber sensing platform, and exploits the interaction between guided light located within the fiber voids and a mixture of the wine sample and a colorimetric analyte. We have shown that this technique enables measurements to be made without dilution of the wine samples, thus paving the way towards real time in situ wine monitoring.
References
[1]
Peynaud, E. Knowing and Making Wine; John Wiley & Sons: New York, NY, USA, 1984.
[2]
Stockley, C. Sulfur dioxide and the wine consumer. Aust. N. Z. Grapegrow. Winemaker 2005, 501, 73–76.
[3]
Compendium of International Methods of Wine and Must Analysis; O.I.V.: Paris, France, 2006. Volume 2.
[4]
Monier, W.G.W. The determination of sulfur dioxide in foods. Analyst 1927, 52, 343–344, doi:10.1039/an9275200343.
[5]
Method 962.16. In Official Methods of Analysis, 16th ed. ed.; AOAC International: Gaithersburg, MD, USA, 1995.
[6]
Method 990.28. In Official Methods of Analysis, 16th ed. ed.; AOAC International: Gaithersburg, MD, USA, 1995.
[7]
Rankine, B.C.; Pocock, K.J. Alkalimetric determination of sulfur dioxide in wine. Austral. Wine Brew. Spirits Rev. 1970, 88, 40–44.
[8]
Buechsenstein, J.; Ough, C. SO2 Determination by aeration-oxidation: A comparison with ripper. Am. J. Enol. Vitic. 1978, 29, 161–164.
[9]
Ripper, M. Schweflige s?ure in weinen und deren bestimmung. J. Prakt. Chem. 1892, 46, 428–473, doi:10.1002/prac.18920460131.
[10]
Iland, P.; Bruer, N.; Edwards, G.; Weeks, S.; Wilkes, E. Analysis Method. In Chemical Analysis of Grapes and Wine: Techniques and Concepts; Patrick Iland Wine Promotions: Campbelltown, Australia, 2004; p. 57.
[11]
Segundo, M.; Rangel, A. A gas diffusion sequential injection system for the determination of sulphur dioxide in wines. Anal. Chim. Acta. 2001, 427, 279–286, doi:10.1016/S0003-2670(00)01197-1.
[12]
Oliveira, S.; Lopes, T.; Tóth, I.; Rangel, A. Development of a gas diffusion multicommuted flow injection system for the determination of sulfur dioxide in wines, comparing malachite green and pararosaniline chemistries. J. Agric. Food Chem. 2009, 57, 3415–3422, doi:10.1021/jf803639n. 19309149
[13]
Prieto, A.; Pavón, J.; Cordero, B. Gas diffusion and micellar catalysis in the flow injection determination of sulphite. Analyst 1994, 119, 2447–2452, doi:10.1039/an9941902447.
[14]
Cardwell, T.; Cattall, R.; Chen, G.; Scollary, G.; Hamilton, I. Determination of free sulphur dioxide in red wine by alternating current voltammetry. Analyst 1991, 116, 253–256, doi:10.1039/an9911600253.
[15]
Azevedo, C.; Araki, K.; Toma, H.; Angnes, L. Determination of sulfur dioxide in wines by gas-diffusion flow injection analysis utilizing modified electrodes with electrostatically assembled films of tetraruthenated porphyrin. Anal. Chim. Acta. 1999, 387, 175–180, doi:10.1016/S0003-2670(99)00060-4.
[16]
Huang, Y.; Zhang, C.; Zhang, X.; Zhang, Z. Chemiluminescence of sulfite based on auto-oxidation sensitized by rhodamine 6G. Anal. Chim. Acta. 1999, 391, 95–100, doi:10.1016/S0003-2670(99)00179-8.
[17]
Koch, M.; K?ppen, R.; Siegel, D.; Witt, A.; Nehls, I. determination of total sulfite in wine by ion chromatography after in-sample oxidation. J. Agric. Food Chem. 2010, 58, 9463–9467, doi:10.1021/jf102086x. 20690603
[18]
Yang, X.; Guo, X.; Zhao, Y. Novel spectrofluorimetric method for the determination of sulfite with rhodamine B hydrazide in a micellar medium. Anal. Chim. Acta. 2002, 456, 121–128, doi:10.1016/S0003-2670(02)00005-3.
[19]
Smith, V. Determination of sulfite using a sulfite oxidase enzyme electrode. Anal. Chem. 1987, 59, 2256–2259, doi:10.1021/ac00145a010.
[20]
West, P.; Gaeke, G. Fixation of sulfur dioxide as disulfitomercurate (II) and subsequent colorimetric estimation. Anal. Chem. 1956, 28, 1816–1819, doi:10.1021/ac60120a005.
Yu, X.; Kwok, Y.; Amirah, K.N.; Shum, P. Absorption detection of cobalt(II) ions in an index-guiding microstructured optical fiber. Sens. Actuators B 2009, 137, 462–466, doi:10.1016/j.snb.2009.01.025.
[25]
Coscelli, E.; Sozzi, M.; Poli, F.; Passaro, D.; Cucinotta, A.; Selleri, S.; Corradini, R.; Marchelli, R. Toward a highly specific dna biosensor: Pna-modified suspended-core photonic crystal fibers. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 967–972, doi:10.1109/JSTQE.2009.2031923.
[26]
Ebendorff, H.H.; Warren, S.S.; Monro, T.M. Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores. Opt. Express 2009, 17, 2646–2657, doi:10.1364/OE.17.002646. 19219168
[27]
Pate, J.; Lodge, J.; Wartburg, A. Effect of pararosaniline in the trace determination of sulfur dioxide. Anal. Chem. 1962, 34, 1660–1662, doi:10.1021/ac60192a001.
[28]
Huitt, H.; Lodge, J. Equilibrium effects in determination of sulfur dioxide with pararosaniline and formaldehyde. Anal. Chem. 1964, 36, 1305–1308, doi:10.1021/ac60213a035.
[29]
Warren, S.S.; Heng, S.; Ebendorff, H.H.; Abell, A.; Monro, T.M. Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber. Langmuir 2011, 27, 5680–5685, doi:10.1021/la2002496. 21469740