全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Lab-on-a-Chip Pathogen Sensors for Food Safety

DOI: 10.3390/s120810713

Keywords: microfluidics, bioMEMS, food safety, water safety, E. coli, Salmonella

Full-Text   Cite this paper   Add to My Lib

Abstract:

There have been a number of cases of foodborne illness among humans that are caused by pathogens such as Escherichia coli O157:H7, Salmonella typhimurium, etc. The current practices to detect such pathogenic agents are cell culturing, immunoassays, or polymerase chain reactions (PCRs). These methods are essentially laboratory-based methods that are not at all real-time and thus unavailable for early-monitoring of such pathogens. They are also very difficult to implement in the field. Lab-on-a-chip biosensors, however, have a strong potential to be used in the field since they can be miniaturized and automated; they are also potentially fast and very sensitive. These lab-on-a-chip biosensors can detect pathogens in farms, packaging/processing facilities, delivery/distribution systems, and at the consumer level. There are still several issues to be resolved before applying these lab-on-a-chip sensors to field applications, including the pre-treatment of a sample, proper storage of reagents, full integration into a battery-powered system, and demonstration of very high sensitivity, which are addressed in this review article. Several different types of lab-on-a-chip biosensors, including immunoassay- and PCR-based, have been developed and tested for detecting foodborne pathogens. Their assay performance, including detection limit and assay time, are also summarized. Finally, the use of optical fibers or optical waveguide is discussed as a means to improve the portability and sensitivity of lab-on-a-chip pathogen sensors.

References

[1]  McCabe-Sellers, B.J.; Beattie, S.E. Food safety: Emerging trends in foodborne illness surveillance and prevention. J. Am. Dietetic Assoc. 2004, 104, 1708–1717, doi:10.1016/j.jada.2004.08.028.
[2]  Mead, P.S.; Slutsker, L.; Dietz, V.; McCaig, L.F.; Bresee, J.S.; Shapiro, C. Food-related illness and death in the United States. Emerg. Infect. Dis. 1999, 5, 607–625, doi:10.3201/eid0505.990502. 10511517
[3]  Batz, M.B.; Doyle, M.P.; Morris, J.G., Jr.; Painter, J.; Singh, R.; Tauxe, R.V.; Taylor, M.R.; Wong, D.M.A.L.F. Attributing illness to food. Emerg. Infect. Dis. 2005, 11, 993–999, doi:10.3201/eid1107.040634. 16022770
[4]  Horby, P.W.; O'Brien, S.J.; Adak, G.K.; Graham, C.; Hawker, J.I.; Hunter, P.; Lane, C.; Lawson, A.J.; Mitchell, R.T.; Reacher, M.H. A national outbreak of multi-resistant Salmonella enteric serovar typhimurium definitive phage type (DT) 104 associated with consumption of lettuce. Epidemiol. Infect. 2003, 130, 169–178, doi:10.1017/S0950268802008063. 12729184
[5]  United States Department of Agriculture Economic Research Services. Foodborne Illness Cost Calculator; USDA: Washington, DC, USA, 2010.
[6]  Munster, V.; Wallensten, A.; Olsen, B.; Rimmelzwaan, G.F.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Influenza A Virus Surveillance in Wild Birds. In Avian Influenza: Prevention and Control; Schrijver, R.S., Koch, G., Eds.; Springer: Dordrecht, The Netherlands, 2005. Chapter 4; pp. 25–30.
[7]  Abe, K.; Kotera, K.; Suzuki, K.; Citterio, D. Inkjet-printed paperfluidic immuno-chemical sensing device. Anal. Bioanal. Chem. 2010, 398, 885–893, doi:10.1007/s00216-010-4011-2. 20652543
[8]  Walczak, R. Fluorescence detection by miniaturized instrumentation based on non-cooled CCD minicamera and dedicated for lab-on-a-chip applications. Biochip J. 2011, 5, 271–279, doi:10.1007/s13206-011-5312-z.
[9]  Zeng, Y.; Novak, R.; Shuga, J.; Smith, M.T.; Mathies, R.A. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal. Chem. 2010, 82, 3183–3190, doi:10.1021/ac902683t. 20192178
[10]  Cho, D.W.; Matlock-Colangelo, L.; Xiang, C.H.; Asiello, P.J.; Baeumner, A.J.; Frey, M.W. Electrospun nanofibers for microfluidic analytical systems. Polymer. 2011, 52, 3413–3421, doi:10.1016/j.polymer.2011.05.026.
[11]  Peitz, I.; van Leeuwen, R. Single-cell bacteria growth monitoring by automated DEP-facilitated image analysis. Lab Chip. 2010, 10, 2944–2951, doi:10.1039/c004691d. 20842296
[12]  Weibel, D.B.; Kruithof, M.; Potenta, S.; Sia, S.K.; Lee, A.; Whitesides, G.M. Torque-actuated valves for microfluidics. Anal. Chem. 2005, 77, 4726–4733, doi:10.1021/ac048303p. 16053282
[13]  Saliterman, S.S. Fundamentals of BioMEMS and Medical Microdevices; SPIE Press: Bellingham, WA, USA, 2006.
[14]  Zhang, C.; Xing, D.; Li, Y. Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends. Biotechnol. Adv. 2007, 25, 483–514. 17601695
[15]  Madou, M.; Zoval, J.; Jia, G.; Kido, H.; Kim, J.; Kim, N. Lab on a CD. Ann. Rev. Biomed. Eng. 2006, 8, 601–628, doi:10.1146/annurev.bioeng.8.061505.095758.
[16]  Cho, Y.-K.; Kim, S.; Lee, K.; Park, C.; Lee, J.-G.; Ko, C. Bacteria concentration using a membrane type insulator-based dielectrophoresis in a plastic chip. Electrophoresis 2009, 30, 3153–3159, doi:10.1002/elps.200900179. 19722215
[17]  Yang, L.; Li, Y. Simultaneous detection of Escherichia coli O157:H7 and Salmonella typhimurium using quantum dots as fluorescence labels. Analyst. 2006, 131, 394–401, doi:10.1039/b510888h. 16496048
[18]  Mao, X.; Yang, L.; Su, X.-L.; Li, Y. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosens. Bioelectron. 2006, 21, 1178–1185, doi:10.1016/j.bios.2005.04.021. 15951163
[19]  Lin, F.Y.H.; Sherman, P.M.; Li, D. Development of a novel hand-held immunoassay for the detection of enterohemorrhagic Escherichia coli O157:H7. Biomed. Microdevices 2004, 6, 125–130, doi:10.1023/B:BMMD.0000031749.02570.75. 15320634
[20]  Li, Y.; Su, X.L. Simultaneous detection of Escherichia coli O157:H7 and Salmonella typhimurium using quantum dots as fluorescence labels. J. Rapid Meth. Autom. Microbiol. 2006, 14, 96–109, doi:10.1111/j.1745-4581.2006.00034.x.
[21]  Boehm, D.A.; Gottlieb, P.A.; Hua, S.Z. On-chip microfluidic biosensor for bacterial detection and identification. Sens. Actuators B. 2007, 126, 508–514, doi:10.1016/j.snb.2007.03.043.
[22]  Skottrup, P.D.; Nicolaisen, M.; Justesen, A.F. Towards on-site pathogen detection using antibodybased sensors. Biosens. Bioelectron 2008, 24, 339–348, doi:10.1016/j.bios.2008.06.045. 18675543
[23]  Fritz, J. Cantilever biosensors. Analyst. 2008, 133, 855–863, doi:10.1039/b718174d. 18575634
[24]  Yang, L.; Bashir, R. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol. Adv. 2008, 26, 135–150, doi:10.1016/j.biotechadv.2007.10.003. 18155870
[25]  Ivnitski, D.; Abdel-Hamid, I.; Atanasov, P.; Wilkins, E. Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron 1999, 14, 599–624, doi:10.1016/S0956-5663(99)00039-1.
[26]  Lazcka, O.; Del Campo, F.J.; Munoz, F.X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron 2007, 22, 1205–1217, doi:10.1016/j.bios.2006.06.036. 16934970
[27]  Mujika, M.; Arana, S.; Castano, E.; Tijero, M.; Vilares, R.; Ruano-Lopez, J.M.; Cruz, A.; Sainz, L.; Berganza, J. Magnetoresistive immunosensor for the detection of Escherichia coli O157:H7 including a microfluidic network. Biosens. Bioelectron 2009, 24, 1253–1258, doi:10.1016/j.bios.2008.07.024. 18760584
[28]  Laitinen, M.P.A.; Vuento, M. Affinity immunosensor for milk progesterone: Identification of critical parameters. Biosens. Bioelectron 1996, 11, 1207–1214, doi:10.1016/0956-5663(96)88085-7. 8896325
[29]  Gussenhoven, G.C.; van der Hoorn, M.A.; Goris, M.G.; Terpstra, W.J.; Hartskeerl, R.A.; Mol, B.W.; van Ingen, C.W.; Smits, H.L. LEPTO dipstick, a dipstick assay for detection of Leptospira-specific immunoglobulin M antibodies in human sera. J. Clin. Microbiol. 1997, 35, 92–97. 8968886
[30]  Posthuma-Trumpie, G.A.; Korf, J.; van Amerongen, A. Lateral flow (immune)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 2009, 393, 569–582, doi:10.1007/s00216-008-2287-2. 18696055
[31]  Henderson, K.; Stewart, J. Factors influencing the measurement of oestrone sulphate by dipstick particle capture immunoassay. J. Immunol. Methods 2002, 270, 77–84, doi:10.1016/S0022-1759(02)00280-6. 12379340
[32]  Snowden, K.; Hommel, M. Antigen detection immunoassay using dipsticks and colloidal dyes. J. Immunol. Methods 1991, 140, 57–65, doi:10.1016/0022-1759(91)90126-Z. 2061614
[33]  van Dam, G.J.; Wichers, J.H.; Ferreira, T.M.F.; Ghati, D.; van Amerongen, A.; Deelder, A.M. Diagnosis of Schistosomiasis by reagent strip test for detection of circulating cathodic antigen. J. Clin. Microbiol. 2004, 42, 5458–5461, doi:10.1128/JCM.42.12.5458-5461.2004. 15583265
[34]  Zuiderwijk, M.; Tanke, H.J.; Niedbala, R.S.; Corstjens, P.L.A.M. An amplification-free hybridization-based DNA assay to detect Streptococcus pneumoniae utilizing the up-converting phosphor technology. Clin. Biochem. 2003, 36, 401–403, doi:10.1016/S0009-9120(03)00057-2. 12849874
[35]  Oku, Y.; Kamiya, K.; Kamiya, H.; Shibahara, Y.; Ii, T.; Uesaka, Y. Development of oligonucleotide lateral-flow immunoassay for multi-parameter detection. J. Immunol. Methods 2001, 258, 73–84, doi:10.1016/S0022-1759(01)00470-7. 11684125
[36]  Guan, X.A.; Zhang, H.J.; Bi, Y.N.; Zhang, L.; Hao, D.L. Rapid detection of pathogens using antibody-coated microbeads with bioluminescence in microfluidic chips. Biomed. Microdevices 2010, 12, 683–691, doi:10.1007/s10544-010-9421-6. 20300854
[37]  Wojciechowski, J.R.; Shriver-Lake, L.C.; Yamaguchi, M.Y.; Fureder, E.; Pieler, R.; Schamesberger, M.; Winder, C.; Prall, H.J.; Sonnleitner, M.; Ligler, F.S. Organic photodiodes for biosensor miniaturization. Anal. Chem. 2009, 81, 3455–3461, doi:10.1021/ac8027323. 19331380
[38]  Ricciardi, C.; Canavese, G.; Castagna, R.; Digregorio, G.; Ferrante, I.; Marasso, S.L.; Ricci, A.; Alessandria, V.; Rantsiou, K.; Cocolin, L.S. Online portable microcantilever biosensors for Salmonella enterica serotype Enteritidis detection. Food Bioprocess Technol. 2010, 3, 956–960, doi:10.1007/s11947-010-0362-0.
[39]  Schemberg, J.; Grodrian, A.; Romer, R.; Gastrock, G.; Lemke, K. Online optical detection of food contaminants in microdroplets. Eng. Life Sci. 2009, 9, 391–397, doi:10.1002/elsc.200800127.
[40]  Abdulhalim, I.; Zourob, M.; Lakhtakia, A. Surface plasmon resonance for biosensing: A mini-review. Electromagnetics 2008, 28, 214–242, doi:10.1080/02726340801921650.
[41]  Hiep, H.M.; Endo, T.; Kerman, K.; Chikae, M.; Kim, D.-K.; Yamamura, S.; Takamura, Y.; Tamiya, E. A localized surface plasmon resonance based immunosensor for the detection of casein in milk. Sci. Technol. Adv. Mater. 2007, 8, 331–378, doi:10.1016/j.stam.2006.12.010.
[42]  Fatima, F.; Katerina, H.; Marek, P.; Francisco, S.-B.; Jiri, H.; M-Pilar, M. A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples. Biosens. Bioelectron 2010, 26, 1231–1238, doi:10.1016/j.bios.2010.06.012. 20637590
[43]  Waswa, J.; Irudayaraj, J.; DebRoy, C. Direct detection of E. coli O157:H7 in selected food systems by a surface plasmon resonance biosensor. LWT-Food Sci. Technol. 2007, 40, 187–192, doi:10.1016/j.lwt.2005.11.001.
[44]  Subramanian, A.; Irudayaraj, J.; Ryan, T. A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157:H7. Biosens. Bioelectron 2006, 21, 998–1006, doi:10.1016/j.bios.2005.03.007. 15878825
[45]  Taylor, A.D.; Ladd, J.; Yu, Q.; Chen, S.; Homola, J.; Jiang, S. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multichannel SPR sensor. Biosens. Bioelectron 2006, 22, 752–758, doi:10.1016/j.bios.2006.03.012. 16635568
[46]  Oh, B.-K.; Kim, Y.-K.; Park, K.W.; Lee, W.H.; Choi, J.-W. Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Biosens. Bioelectron 2004, 19, 1497–1504, doi:10.1016/j.bios.2003.12.009. 15093222
[47]  Yoon, J.-Y. Latex immunoagglutination assay in lab-on-a-chip. Biol. Eng. 2008, 1, 79–94.
[48]  Mishchenko, M.I.; Travis, L.D.; Lacis, A.A. Scattering, Absorption, and Emission of Light by Small Particles; Cambridge University Press: New York, NY, USA, 2002.
[49]  Lucas, L.J.; Han, J.-H.; Yoon, J.-Y. Using highly carboxylated microspheres to simplify immunoassays and enhance diffusional mixing in microfluidic devices. Colloids Surf. B. 2006, 49, 106–111, doi:10.1016/j.colsurfb.2006.03.008.
[50]  Han, J.-H.; Kim, K.-S.; Yoon, J.-Y. The enhanced diffusional mixing for latex immunoagglutination assay in a microfluidic device. Anal. Chim. Acta. 2007, 584, 252–259, doi:10.1016/j.aca.2006.11.044. 17386612
[51]  Lucas, L.J.; Han, J.-H.; Chesler, J.; Yoon, J.-Y. Latex immunoagglutination for a vasculitis marker in a microfluidic device using static light scattering detection. Biosens. Bioelectron 2007, 22, 2216–2222, doi:10.1016/j.bios.2006.10.029. 17141495
[52]  Lucas, L.J.; Chesler, J.N.; Yoon, J.-Y. Lab-on-a-chip immunoassay for multiple antibodies using microsphere light scattering and quantum dot emission. Biosens. Bioelectron 2007, 23, 675–681, doi:10.1016/j.bios.2007.08.004. 17869502
[53]  Han, J.-H.; Heinze, B.C.; Yoon, J.-Y. Single cell level detection of Escherichia coli in microfluidic device. Biosens. Bioelectron 2008, 23, 1303–1306, doi:10.1016/j.bios.2007.11.013. 18182284
[54]  Yoon, J.-Y. Detection of avian influenza type A H3N2 virus antigens in microchannel and droplet microfluidics. Biol. Eng. 2008, 1, 323–333.
[55]  Heinze, B.C.; Song, J.-Y.; Lee, C.-H.; Najam, A.; Yoon, J.-Y. Microfluidic immunosensor for rapid and sensitive detection of bovine viral diarrhea virus. Sens. Actuators B. 2009, 138, 491–496, doi:10.1016/j.snb.2009.02.058.
[56]  Kwon, H.-J.; Dean, Z.S.; Angus, S.V.; Yoon, J.-Y. Lab-on-a-chip for field Escherichia coli assays: long-term stability of reagents and automatic sampling system. JALA 2010, 15, 216–223.
[57]  Heinze, B.C.; Yoon, J.-Y. Nanoparticle immunoagglutination Rayleigh scatter assay to complement microparticle immunoagglutination Mie scatter assay in a microfluidic device. Colloids Surf. B. 2011, 85, 168–173, doi:10.1016/j.colsurfb.2011.02.024.
[58]  Heinze, B.C.; Gamboa, J.R.; Kim, K.; Song, J.-Y.; Yoon, J.-Y. Microfluidic immunosensor with integrated liquid core waveguides for sensitive Mie scattering detection of avian influenza antigens in a real biological matrix. Anal. Bioanal. Chem. 2010, 398, 2693–2700, doi:10.1007/s00216-010-4201-y. 20859619
[59]  You, D.J.; Geshell, K.J.; Yoon, J.-Y. Direct and sensitive detection of foodborne pathogens within fresh produce samples using a field-deployable handheld device. Biosens. Bioelectron 2011, 28, 399–406, doi:10.1016/j.bios.2011.07.055. 21840701
[60]  Fronczek, C.F.; You, D.J.; Yoon, J.-Y. Single-Pipetting Microfluidic Assay Device for Salmonella in Poultry Package Water. Proceedings of Biosensors World Congress, Cancun, Mexico, 15–18 May 2012.
[61]  Tokarskyya, O.; Marshall, D.L. Immunosensors for rapid detection of Eschierichia coli O157:H7 – perspectives for use in the meat processing industry. Food Microbiol. 2008, 25, 1–12, doi:10.1016/j.fm.2007.07.005. 17993371
[62]  Yang, L.; Li, Y.; Griffis, C.L.; Johnson, M.G. Interdigitated microelectrode (IME) impedance sensor for the detection of viable. Salmonella typhimurium. Biosens. Bioelectron. 2004, 19, 1139–1147, doi:10.1016/j.bios.2003.10.009.
[63]  Guo, X.; Kulkarni, A.; Doepke, A.; Halsall, H.B.; Iyer, S.; Heineman, W.R. Carbohydrate-based label-free detection of Escherichia coli ORN 178 using electrochemical impedance spectroscopy. Am. Chem. Soc. 2012, 84, 241–246.
[64]  Garcia-Aljaro, C.; Cella, L.N.; Shirale, D.J.; Park, M.; Javier Munoz, F.; Yates, M.V.; Mulchandani, A. Carbon nanotubes-based chemiresistive biosensors for detection of microorganisms. Biosens. Bioelectron 2010, 26, 1437–1441, doi:10.1016/j.bios.2010.07.077. 20729063
[65]  Yang, M.; Kostov, Y.; Bruck, H.A.; Rasooly, A. Carbon nanotubes with enhanced chemiluminescence immunoassay for CCD-based detection of Staphylococcal Enterotoxin B in food. Anal. Chem. 2008, 80, 8532–8537, doi:10.1021/ac801418n. 18855418
[66]  Yang, M.; Sun, S.; Kostov, Y.; Rasooly, A. Lab-on-a-chip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB). Lab Chip. 2010, 10, 1011–1017, doi:10.1039/b923996k. 20358108
[67]  Sun, S.; Yang, M.; Kostov, Y.; Rasooly, A. ELISA-LOC: Lab-on-a-chip for enzyme-linked immunodetection. Lab Chip. 2010, 10, 2093–2100, doi:10.1039/c003994b. 20544092
[68]  Hu, Y.; Zhao, Z.; Wan, Q. Facile preparation of carbon nanotube-conducting polymer network for sensitive electrochemical immunoassay of Hepatitis B surface antigen in serum. Bioelectrochemistry 2011, 81, 59–64, doi:10.1016/j.bioelechem.2011.01.005. 21458390
[69]  Takenaka, S.; Yamashita, K.; Takagi, M.; Uto, Y.; Kondo, H. DNA sensing on a DNA probemodified electrode using ferrocenylnaphthalene diimide as the electrochemically active ligand. Anal. Chem. 2000, 72, 1334–1341, doi:10.1021/ac991031j. 10740879
[70]  de Lumley-Woodyear, T.; Campbell, C.N.; Heller, A. Direct enzyme-amplified electrical recognition of a 30-base model oligonucleotide. J. Am. Chem. Soc. 1996, 118, 5504–5505, doi:10.1021/ja960490o.
[71]  Xu, C.; Cai, H.; He, P.; Fang, Y. Electrochemical detection of sequence-specific DNA using a DNA probe labeled with aminoferrocene and chitosan modified electrode immobilized with ssDNA. Analyst 2001, 126, 62–65, doi:10.1039/b005847p. 11205514
[72]  Millan, K.M.; Saraullo, A.; Mikkelsen, S.R. Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. Anal. Chem. 1994, 66, 2943–2948, doi:10.1021/ac00090a023. 7978297
[73]  Dutse, S.W.; Yusof, N.A. Microfluidics-based lab-on-chip systems in DNA-based biosensing: An overview. Sensors 2011, 11, 5754–5768, doi:10.3390/s110605754. 22163925
[74]  Fritzsche, W. DNA-gold conjugates for the detection of specific molecular interactions. Rev. Mol. Biotechnol. 2001, 82, 37–46, doi:10.1016/S1389-0352(01)00028-9.
[75]  Lee, J.-G.; Cheong, K.H.; Huh, N.; Kim, S.; Choi, J.-W.; Ko, C. Microchip-based one step DNA extraction and real-time PCR in one chamber for rapid pathogen identification. Lab Chip. 2006, 6, 886–895, doi:10.1039/b515876a. 16804593
[76]  Cheong, K.H.; Yi, D.K.; Lee, J.-G.; Park, J.-M.; Kim, M.J.; Edel, J.B.; Ko, C. Gold nanoparticles for one step DNA extraction and real-time PCR of pathogens in a single chamber. Lab Chip. 2008, 8, 810–813, doi:10.1039/b717382b. 18432353
[77]  Easley, C.; Karlinseq, J.M.; Bienvenue, J.M.; Legendre, L.A.; Roper, M.G.; Feldman, S.H.; Hughes, M.A.; Hewlett, E.L.; Merkel, T.J.; Ferrance, J.P.; et al. A fully integrated microfuidic genetic analysis system with sample-in-answer-out capability. Proc. Natl. Acad. Sci. USA 2006, 103, 19272–19277, doi:10.1073/pnas.0604663103. 17159153
[78]  Huang, F.C.; Liao, C.S.; Lee, G.B. An integrated microfluidic chip for DNA/RNA amplification, electrophoresis, separation and on-line optical detection. Electrophoresis 2006, 27, 3297–3305, doi:10.1002/elps.200600458. 16865670
[79]  Kopp, M.U.; de Mello, A.J.; Manz, A. Chemical amplification: continuous-flow PCR on a chip. Science 1998, 280, 1046–1048, doi:10.1126/science.280.5366.1046. 9582111
[80]  Lien, K.Y.; Lee, W.C.; Lei, H.Y.; Lee, G.B. Integrated reverse transcription polymerase chain reaction systems for virus detection. Biosens. Bioelectron 2007, 22, 1739–1748, doi:10.1016/j.bios.2006.08.010. 16978853
[81]  Pal, R.; Yang, M.; Lin, R.; Johnson, B.N.; Srivastava, N.; Razzacki, S.Z.; Chomistek, K.J.; Heldsinger, D.C.; Haque, R.M.; Ugaz, V.M.; et al. An integrated microfluidic device for influenza and other genetic analyses. Lab Chip. 2005, 5, 1024–1032, doi:10.1039/b505994a. 16175256
[82]  Mohr, S.; Zhang, Y.-H.; Macaskill, A.; Day, P.J.R.; Barber, R.W.; Goddard, N.J.; Emerson, D.R.; Fielden, P.R. Numerical and experimental study of a droplet-based PCR chip. Microfluid. Nanofluid 2007, 3, 611–621, doi:10.1007/s10404-007-0153-8.
[83]  Li, Y.Y.; Zhang, C.S.; Xing, D. Integrated microfluidic reverse transcription-polymerase chain reaction for rapid detection of food- or waterborne pathogenic rotavirus. Anal. Biochem. 2011, 415, 87–96, doi:10.1016/j.ab.2011.04.026. 21570946
[84]  Delibato, E.; Gattuso, A.; Minucci, A.; Auricchio, B.; De Medici, D.; Toti, L.; Castagnola, M.; Capoluongo, E.; Gianfranceschi, M.V. PCR experion automated electrophoresis system to detect Listeria monocytogenes in foods. J. Sep. Sci. 2009, 32, 3817–3821, doi:10.1002/jssc.200900166. 19810054
[85]  Cho, S.K.; Moon, H.; Kim, C.-J. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic citcuits. J. Microelectromech. Syst. 2003, 12, 70–80, doi:10.1109/JMEMS.2002.807467.
[86]  Rocha-Gaso, M.-I.; March-Iborra, C.; Montoya-Baides, A.; Arnau-Vives, A. Surface generated acoustic wave biosensors for the detection of pathogens: A review. Sensors 2009, 9, 5740–5769. 22346725
[87]  Egatz-Gómez, A.; Melle, S.; García, A.A.; Lindsay, S.A.; Márquez, M.; Domínguez-García, P.; Rubio, M.A.; Picraux, S.T.; Taraci, J.L.; Clement, T.; et al. Discrete magnetic microfluidics. Appl. Phys. Lett. 2006, 89, 034106, doi:10.1063/1.2227517.
[88]  Yoon, J.-Y.; You, D.J. Backscattering particle immunoassays in wire-guide droplet manipulations. J. Biol. Eng. 2008, 2, 15, doi:10.1186/1754-1611-2-15. 19014703
[89]  Chang, Y.-H.; Lee, G.-B.; Huang, F.-C.; Chen, Y.-Y.; Lin, J.-L. Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed. Microdevices 2006, 8, 215–225, doi:10.1007/s10544-006-8171-y. 16718406
[90]  Guttenberg, Z.; Muller, H.; Habermuller, H.; Geisbauer, A.; Pipper, J.; Felbel, J.; Kielpinski, M.; Scriba, J.; Wixforth, A. Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip. 2005, 5, 308–317, doi:10.1039/b412712a. 15726207
[91]  Ohashi, T.; Kuyama, H.; Hanafusa, N.; Togawa, Y. A simple device using magnetic transportation for droplet-based PCR. Biomed. Microdevices 2007, 9, 695–702, doi:10.1007/s10544-007-9078-y. 17505884
[92]  You, D.J.; Tran, P.L.; Kwon, H.-J.; Patel, D.; Yoon, J.-Y. Very quick reverse transcription polymerase chain reaction for detection 2009 H1N1 influenza A using wire-guide droplet manipulations. Faraday Discuss 2011, 149, 159–170, doi:10.1039/c005326k. 21413180
[93]  Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63, doi:10.1093/nar/28.12.e63. 10871386
[94]  Maruyama, F.; Kenzaka, T.; Yamaguchi, N.; Tani, K.; Nasu, M. Detection of bacteria carrying the stx2 gene by in situ loop-mediated isothermal amplification. Appl. Environ. Microbiol. 2003, 69, 5023–5028, doi:10.1128/AEM.69.8.5023-5028.2003. 12902306
[95]  Liu, C.C.; Mauk, M.G.; Hart, R.; Qiu, X.B.; Bau, H.H. A self-heating cartridge for molecular diagnostics. Lab Chip. 2011, 11, 2686–2692, doi:10.1039/c1lc20345b. 21734986
[96]  Liu, C.C.; Geva, E.; Mauk, M.; Qiu, X.B.; Abrams, W.R.; Malamud, D.; Curtis, K.; Owen, S.M.; Bau, H.H. An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases. Analyst 2011, 136, 2069–2076, doi:10.1039/c1an00007a. 21455542
[97]  Jenkins, D.M.; Kubota, R.; Dong, J.; Li, Y.; Higashiguchi, D. Handheld device for real-time, quantitative, LAMP-based detection of Salmonella enterica using assimilating probes. Biosens. Bioelectron 2011, 30, 255–260, doi:10.1016/j.bios.2011.09.020. 21982643
[98]  Wang, D.; Huo, G.; Ren, D.; Li, Y. Development and evaluation of a loop-mediated isothermal amplification (LAMP) method for detecting Listeria monocytogenes in raw milk. J. Food Safety 2010, 30, 251–262, doi:10.1111/j.1745-4565.2009.00196.x.
[99]  Hara-Kudo, Y.; Nemoto, J.; Ohtsuka, K.; Segawa, Y.; Takatori, K.; Kojima, T.; Ikedo, M. Sensitive and rapid detection of Vero toxin-producing Escherichia coli using loop-mediated isothermal amplification. J. Med. Microbiol 2007, 56, 398–406, doi:10.1099/jmm.0.46819-0. 17314373
[100]  Ye, Y.; Wang, B.; Huang, F.; Song, Y.; Yan, H.; Alam, M.J.; Yamasaki, S.; Shi, L. Application of in situ loop-mediated isothermal amplification method for detection of Salmonella in foods. Food Control 2011, 22, 438–444, doi:10.1016/j.foodcont.2010.09.023.
[101]  Gill, P.; Ghaemi, A. Nucleic acid isothermal amplification technologies—A review. Nucleosides Nucleotides Nucleic Acids 2008, 27, 224–243, doi:10.1080/15257770701845204. 18260008
[102]  Komen, J.; Wolbers, F.; Franke, H.R.; Andersson, H.; Vermes, I.; van den Berg, A. Viability analysis and apoptosis induction of breast cancer cells in a microfluidic device: Effect of cytostatic drugs. Biomed. Microdev. 2008, 10, 727–737, doi:10.1007/s10544-008-9184-5.
[103]  Lee, K.H.; Kwon, G.H.; Shin, S.J.; Baek, J.-Y.; Han, D.K.; Park, Y.; Lee, S.H. Hydrophilic electrospun polyurethane nanofiber matrices for hMSC culture in a microfluidic cell chip. J. Biomed. Mater. Res. A. 2009, 90A, 619–628, doi:10.1002/jbm.a.32059.
[104]  Mukundan, H.; Anderson, A.S.; Grace, W.K.; Grace, K.M.; Hartman, N.; Martinez, J.S.; Swanson, B.I. Waveguide-based biosensors for pathogen detection. Sensors 2009, 9, 5783–5809, doi:10.3390/s90705783. 22346727
[105]  Su, X.-T.; Singh, K.; Capjack, C.; Petrá?ek, J. Measurements of light scattering in an integrated microfluidic waveguide cytometer. J. Biomed. Opt. 2008, 13, 024024, doi:10.1117/1.2909670. 18465987
[106]  Bliss, C.L.; McMullin, J.N.; Backhouse, C.J. Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis. Lab Chip. 2007, 7, 1280–1287, doi:10.1039/b708485d. 17896011
[107]  Angus, S.V.; Kwon, H.-J.; Yoon, J.-Y. Low-level detection of Cryptosporidium parvum in field water using optical microfluidic biosensors. Proc. SPIE 2012, 8229, 82290F.
[108]  Doering, C. Foodborne illness costs $152 billion annually: Study. 3 March 2010. Available online: http://www.reuters.com/article/idUSTRE6220NO20100303 (accessed on 1 August 2012).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133