全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Pedestrian Navigation Based on a Waist-Worn Inertial Sensor

DOI: 10.3390/s120810536

Keywords: pedestrian dead-reckoning, inertial navigation, localization, location based services, ambulatory monitoring, human motion

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present a waist-worn personal navigation system based on inertial measurement units. The device makes use of the human bipedal pattern to reduce position errors. We describe improved algorithms, based on detailed description of the heel strike biomechanics and its translation to accelerations of the body waist to estimate the periods of zero velocity, the step length, and the heading estimation. The experimental results show that we are able to support pedestrian navigation with the high-resolution positioning required for most applications.

References

[1]  Zajac, F.; Neptune, R.; Kautz, S. Biomechanics and muscle coordination of human walking Part I: Introduction to concepts, power transfer, dynamics and simulations. Gait Posture 2002, 16, 215–232.
[2]  Bebek, O.; Suster, M.A.; Rajgopal, S.; Fu, M.J.; Huang, X.; Vavusoglu, M.C.; Young, D.J.; Meheragany, M.; van den Bogert, A.J.; Mastrangelo, C.H. Personal navigation via high-resolution gait-corrected inertial measurement units. IEEE Trans. Instrum. Meas. 2010, 59, 3018–3027.
[3]  Ojeda, L.; Borenstein, J. Non-GPS navigation for security personnel and first responders. J. Navig. 2007, 60, 391–407.
[4]  Feliz, R.; Zalama, E.; García-Bermejo, J. Pedestrian tracking using inertial sensors. J. Phys. Agents 2009, 3, 35–42.
[5]  Park, S.K.; Suh, Y.S. A zero velocity detection algorithm using inertial sensors for pedestrian navigation systems. Sensors 2010, 10, 9163–9178.
[6]  Fyfe, K. Motion analysis system. U.S. Patent 5955667, September 1999.
[7]  Stirling, R.; Collin, J.; Fyfe, K.; Lachapelle, G. An Innovative Shoe-Mounted Pedestrian Navigation System. Proceedings of the Global Navigation Satellite System (GNSS), Graz, Austria, 22–25 April 2003.
[8]  Sagawa, K.; Inooka, H.; Satoh, Y. Non-Restricted Measurement of Walking Distance. Proceedings of the 2000 IEEE International Conference on Systems, Man, and Cybernetics, Nashville, TN, USA, 8–11 October 2000. Volume 3; pp. 1847–1852.
[9]  Cho, S.Y.; Park, C.G. MEMS based pedestrian navigation system. J. Navig. 2005, 59, 135–153.
[10]  Cavallo, F.; Sabatini, A.; Genovese, V. A Step toward GPS/INS Personal Navigation Systems: Real-Time Assessment of Gait by Foot Inertial Sensing. Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Edmonton, AB, Canada, 2–6 August 2005; pp. 1187–1191.
[11]  Borenstein, J.; Ojeda, L.; Kwanmuang, S. Heuristic reduction of gyro drift in IMU-based personnel tracking systems. Proc. SPIE 2009, 7306, 73061H.
[12]  Godha, S.; Lachapelle, G. Foot mounted inertial system for pedestrian navigation. Meas. Sci. Technol. 2008, doi:10.1088/0957-0233/19/7/075202.
[13]  Yang, S.; Li, Q. Inertial sensor-based methods in walking speed estimation: A systematic review. Sensors 2012, 12, 6102–6116.
[14]  Brand, T.J.; Phillips, R.E. Foot-to-Foot Range Measurement as an Aid to Personal Navigation. Proceeding of the 59th Annual Meeting of the Institute of Navigation and CIGTF 22nd Guidance Test Symposium, Albuquerque, NM, USA, 23–25 June 2003; pp. 113–121.
[15]  Saarinen, J.; Suomela, J.; Heikkila, S.; Elomaa, M.; Halme, A. Personal Navigation System. Proceeding of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), Sendai, Japan, 28 September–2 October 2004. Volume 1; pp. 212–217.
[16]  Alvarez, J.; Gonzalez, R.; Alvarez, D. Multisensor approach to walking distance estimation with foot inertial sensing. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 2007, 5720–5723.
[17]  Levi, R.; Marshall, R. Navigation device for personnel on foot. U.S. Patent 6813582, 25 July 2003.
[18]  Ladetto, Q.; Gabaglio, V.; van Seeters, J. Pedestrian navigation method and apparatus operative in a dead reckoning mode. U.S. Patent 6826477, 23 April 2001.
[19]  Fang, L.; Antsaklis, P.J.; Montestruque, L.A.; McMickell, M.B.; Lemmon, M.; Sun, Y.; Fang, H.; Koutroulis, I.; Haenggi, M.; Xie, M.; et al. Design of a wireless assisted pedestrian dead reckoning system—The NavMote experience. IEEE Trans. Instrum. Meas. 2005, 54, 2342–2358.
[20]  Sun, Z.; Mao, X.; Tian, W.; Zhang, X. Activity classification and dead reckoning for pedestrian navigation with wearable sensors. Meas. Sci. Technol. 2008, 20, doi:10.1088/0957-0233/20/1/015203.
[21]  Zijlstra, W.; Hof, A. Displacement of the pelvis during human walking: Experimental data and model predictions. Gait Posture 1997, 6, 249–262.
[22]  Zijlstra, W.; Hof, A. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 2003, 18, 1–10.
[23]  Gonzalez, R.C.; Alvarez, D.; Lopez, A.M.; Alvarez, J.C. Modified Pendulum Model for Mean Step Length Estimation. Proceeding of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007. Volume 1; pp. 1371–1374.
[24]  Gonzalez, R.; Lopez, A.; Rodriguez-Uría, J.; Alvarez, D.; Alvarez, J.C. Real-time gait event detection for normal subjects from lower trunk accelerations. Gait Posture 2010, 31, 322–325.
[25]  Randell, C.; Djiallis, C.; Muller, H. Personal Position Measurement Using Dead Reckoning. Proceeding of the 7th IEEE Int. Symp. Wearable Computers, New York, NY, USA, 21–23 October 2003; pp. 166–173.
[26]  Lopez, A.; Alvarez, D.; Gonzalez, R. Validity of four gait models to estimate walked distance from vertical COG acceleration. J. Appl. Biomech. 2008, 24, 360–367.
[27]  Gonzalez, R.; Alvarez, D.; Lopez, A.; Alvarez, J. Ambulatory estimation of mean step length during unconstrained walking by means of COG accelerometry. Comput. Methods Biomech. Biomed. Eng. 2009, 12, 721–726.
[28]  Jadliwala, M.; Zhong, S.; Upadhyaya, S.J.; Qiao, C.; Hubaux, J.-P. Secure distance-based localization in the presence of cheating beacon nodes. IEEE Trans. Mob. Comput. 2010, 9, 810–823.
[29]  Ayub, S.; Zhou, X.; Honary, S.; Bahraminasab, A.; Honary, B. Indoor pedestrian displacement estimation using Smart phone inertial sensors. Int. J. Innov. Comput. Appl. 2012, 4, 35–42.
[30]  Bancroft, J.B.; Lachapelle, G. Use of Magnetic Quasi Static Field (QSF) Updates for Pedestrian Navigation. Proceeding of the Position, Location and Navigation Symposium, Grande Dunes, SC, USA, 23–26 April 2012; pp. 1–8.
[31]  Olivier, A.; Cretual, A. Velocity/curvature relations along a single turn in human locomotion. Neurosci. Lett. 2007, 412, 148–153.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133