Based on the magnetic resonance coupling principle, in this paper a wireless energy transfer system is designed and implemented for the power supply of micro-implantable medical sensors. The entire system is composed of the in vitro part, including the energy transmitting circuit and resonant transmitter coils, and in vivo part, including the micro resonant receiver coils and signal shaping chip which includes the rectifier module and LDO voltage regulator module. Transmitter and receiver coils are wound by Litz wire, and the diameter of the receiver coils is just 1.9 cm. The energy transfer efficiency of the four-coil system is greatly improved compared to the conventional two-coil system. When the distance between the transmitter coils and the receiver coils is 1.5 cm, the transfer efficiency is 85% at the frequency of 742 kHz. The power transfer efficiency can be optimized by adding magnetic enhanced resonators. The receiving voltage signal is converted to a stable output voltage of 3.3 V and a current of 10 mA at the distance of 2 cm. In addition, the output current varies with changes in the distance. The whole implanted part is packaged with PDMS of excellent biocompatibility and the volume of it is about 1 cm3.
References
[1]
Jow, U.M.; Ghovanloo, M. Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission. IEEE Trans. Biomed. Circuits Syst. 2007, 1, 193–202, doi:10.1109/TBCAS.2007.913130.
[2]
Saadon, S.; Sidek, O. A review of vibration-based MEMS piezoelectric energy harvesters energy convers. Manage 2011, 52, 500–504.
[3]
Urzhumov, Y.; Smith, D.R. Metamaterial-Enhanced coupling between magnetic dipoles for efficient wireless power transfer. Phys. Rev. 2011, 83, 205114:1–205114:10.
[4]
Brown, W.C. The history of power transmission by radio waves. IEEE Trans. Microw. Theory Tech. 1984, 32, 1230–1242, doi:10.1109/TMTT.1984.1132833.
[5]
Chen, H.; Liu, M.; Jia, C.; Zhang, C.; Wang, Z. Low Power IC Design of the Wireless Monitoring System of the Orthopedic Implants. Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Lyon, France, 22–26 August 2007; pp. 5766–5769.
[6]
Kumar, A.; Mirabbasi, S.; Chiao, M. Resonance-Based Wireless Power Delivery for Implantable Devices. Proceedings of the IEEE Biomedical Circuits and Systems Conference, Beijing, China, 26–28 November 2009; pp. 25–28.
[7]
Smith, S.; Tang, T.B.; Terry, J.G.; Stevenson, J.T.M.; Flynn, B.W.; Reekie, H.M.; Murray, A.F.; Gundlach, A.M.; Renshaw, D.; Dhillon, B.; et al. Development of a miniaturized drug delivery system with wireless power transfer and communication. IET Nanobiotechnol. 2007, 1, 80–86, doi:10.1049/iet-nbt:20070022. 17764377
[8]
Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.; Soljacic, M. Wireless power transfer via strongly coupled magnetic resonances. Science 2007, 317, 83–86, doi:10.1126/science.1143254. 17556549
Liu, X.; Zhang, F.; Hackworth, A.S.; Sclabassi, J.R.; Sun, M. Modeling and Simulation of a Thin Film Power Transfer Cell for Medical Devices and Implants. Proceedings of the IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, 24–27 June 2009; pp. 3086–3089.
[11]
Liu, X.; Zhang, F.; Hackworth, A.S.; Sclabassi, J.R.; Sun, M. Wireless Power Transfer System Design for Implanted and Worn Devices. Proceedings of the 2009 IEEE 35th Annual Northeast Bioengineering Conference, Boston, MA, USA, 3–5 April 2009; pp. 1–2.
[12]
RamRakhyani, A.K.; Mirabbasi, S.; Chiao, M. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 48–63, doi:10.1109/TBCAS.2010.2072782.
[13]
Sivaprakasam, M.; Liu, W.; Wang, G.; Weiland, J.D.; Humayun, M.S. Architecture tradeoffs in high-density micro-stimulators for retinal prosthesis. IEEE Trans. Circuits Syst. Regul. Pap. 2005, 52, 2629–2641, doi:10.1109/TCSI.2005.857554.
[14]
Chen, G.; Ghaed, H.; Haque, R.; Wieckowski, M.; Kim, Y.; Kim, G.; Fick, D.; Kim, D.; Seok, M.; Wise, K.; et al. A Cubic-Millimeter Energy-Autonomous Wireless Intraocular Pressure Monitor. Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 20–24 February 2011; pp. 310–213.
[15]
Chae, M.S.; Liu, W.; Sivaprakasam, M. Design optimization for integrated neural recording systems. IEEE J. Solid-State Circuits 2008, 43, 1931–1939, doi:10.1109/JSSC.2008.2001877.
[16]
Kumar, P.; Lee, H.J. Security issues in healthcare applications using wireless medical sensor networks: A survey. Sensors 2012, 12, 55–91, doi:10.1109/JSEN.2011.2119477. 22368458
[17]
Atluri, S.; Ghovanloo, M. Design of a Wideband Power-Efficient Inductive Wireless Link for Implantable Biomedical Devices Using Multiple Carriers. Proceedings of the 2nd International IEEE EMBS Neural Engineering Conference, Arlington, VA, USA, 16–19 March 2005; pp. 533–537.
Yang, Z.; Liu, W.; Basham, E. Inductor modeling in wireless links for implantable electronics. IEEE Trans. Magn. 2007, 43, 3851–3860, doi:10.1109/TMAG.2007.904189.
[20]
Ferreira, J. Improved analytical modeling of conductive losses in magnetic components. IEEE Trans. Power Electron. 1994, 9, 127–131, doi:10.1109/63.285503.
[21]
Sokal, N.O.; Sokal, A.D. Class E—A new class of high-efficiency tuned single-ended switching power amplifiers. IEEE J. Solid-State Circuits 1975, 10, 168–176, doi:10.1109/JSSC.1975.1050582.
[22]
Acar, M.; Annema, A.J.; Nauta, B. Analytical Design Equations for Class-E Power Amplifiers. Proceedings of the IEEE Transactions on Circuits and Systems I: Regular Papers, New Orleans, LA, USA, 27–30 May 2007. Volume 54; pp. 2706–2717.
[23]
Song, Y.; Lee, S.; Cho, E.; Lee, J; Nam, S. A CMOS Class-E power amplifier with voltage stress relief and enhanced efficiency. IEEE Trans. Microw. Theory Tech. 2010, 58, 310–317, doi:10.1109/TMTT.2009.2037877.
[24]
Kawahara, T.; Suetsugu, T. Class E Frequency Multiplier Driving Class E Amplifier. Proceedings of the 19th Telecommunications Energy Conference, Melbourne, VIC, Australia, 19–23 October 1997; pp. 617–621.
[25]
Ghovanloo, M.; Najafi, K. Fully integrated wideband high-current rectifiers for inductively powered devices. IEEE J. Solid-State Circuits 2004, 39, 1976–1984, doi:10.1109/JSSC.2004.835822.
[26]
Milliken, R.J.; Silva-Martinez, J.; Sanchez-Sinencio, E. Full on-chip CMOS low-dropout voltage regulator. IEEE Trans. Circuits Syst. Regul. Pap. 2007, 54, 1879–1890, doi:10.1109/TCSI.2007.902615.
[27]
Malcovati, P.; Maloberti, F.; Fiocchi, C.; Pruzzi, M. Curvature-Compensated BiCMOS bandgap with 1-V supply voltage. IEEE J. Solid-State Circuits 2001, 36, 1076–1081, doi:10.1109/4.933463.