全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Development of a Novel Optical Biosensor for Detection of Organophoshorus Pesticides Based on Methyl Parathion Hydrolase Immobilized by Metal-Chelate Affinity

DOI: 10.3390/s120708477

Keywords: optical biosensor, methyl parathion hydrolase, organophosphorus compound, metal-chelate affinity

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have developed a novel optical biosensor device using recombinant methyl parathion hydrolase (MPH) enzyme immobilized on agarose by metal-chelate affinity to detect organophosphorus (OP) compounds with a nitrophenyl group. The biosensor principle is based on the optical measurement of the product of OP catalysis by MPH (p-nitrophenol). Briefly, MPH containing six sequential histidines (6× His tag) at its N-terminal was bound to nitrilotriacetic acid (NTA) agarose with Ni ions, resulting in the flexible immobilization of the bio-reaction platform. The optical biosensing system consisted of two light-emitting diodes (LEDs) and one photodiode. The LED that emitted light at the wavelength of the maximum absorption for p-nitrophenol served as the signal light, while the other LED that showed no absorbance served as the reference light. The optical sensing system detected absorbance that was linearly correlated to methyl parathion (MP) concentration and the detection limit was estimated to be 4 μM. Sensor hysteresis was investigated and the results showed that at lower concentration range of MP the difference got from the opposite process curves was very small. With its easy immobilization of enzymes and simple design in structure, the system has the potential for development into a practical portable detector for field applications.

References

[1]  Constantine, C.A.; Mello, S.V.; Dupont, A.; Cao, X.H.; Santos, D.; Oliveira, O.N.; Strixino, F.T.; Pereira, E.C.; Cheng, T.C.; Defrank, J.J.; et al. Layer-by-layer self-assembled chitosan/poly(thiophene-3-acetic acid) and organophosphorus hydrolase multilayers. J. Am. Chem. Soc. 2003, 125, 1805–1809.
[2]  Carvalho, F.P.; Gonzalez-Farias, F.; Villenueve, J.P.; Cantani, C.; Hernandez-Garza, M.; Mee, L.; Fowler, S.W. Distribution, fate and effects of pesticide residues in tropical coastal lagoons of northwestern Mexico. Environ. Technol. 2002, 23, 1257–1270.
[3]  Hildebrandt, A.; Lacorte, S.; Barcelo, D. Assessment of priority pesticides, degradation products, and pesticide adjuvants in groundwaters and top soils from agricultural areas of the Ebro river basin. Anal. Bioanal. Chem. 2007, 387, 1459–1468.
[4]  Maxwell, D.M.; Brecht, K.M.; Koplovitz, I.; Sweeney, R.E. Acetylcholinesterase inhibition: Does it explain the toxicity of organophosphorus compounds? Arch. Toxicol. 2006, 80, 756–760.
[5]  Li, L.; Zhou, S.S.; Jin, L.X.; Zhang, C.; Liu, W.P. Enantiomeric separation of organophosphorus pesticides by high-performance liquid chromatography, gas chromatography and capillary electrophoresis and their applications to environmental fate and toxicity assays. J. Chromatogr. B 2010, 878, 1264–1276.
[6]  Andreescu, S.; Barthelmebs, L.; Marty, J.L. Immobilization of acetylcholinesterase on screen-printed electrodes: Comparative study between three immobilization methods and applications to the detection of organophosphorus insecticides. Anal. Chim. Acta 2002, 464, 171–180.
[7]  Arduini, F.; Amine, A.; Moscone, D.; Palleschi, G. Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B(1) detection (review). Microchim. Acta 2010, 170, 193–214.
[8]  Choi, J.W.; Kim, Y.K.; Lee, I.H.; Min, J.H.; Lee, W.H. Optical organophosphorus biosensor consisting of acetyleholinesterase/viologen hetero Langmuir-Blodgett film. Biosens. Bioelectron. 2001, 16, 937–943.
[9]  Gong, J.M.; Wang, L.Y.; Zhang, L.Z. Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au-polypyrrole interlaced network-like nanocomposite. Biosens. Bioelectron. 2009, 24, 2285–2288.
[10]  Hildebrandt, A.; Bragos, R.; Lacorte, S.; Marty, J.L. Performance of a portable biosensor for the analysis of organophosphorus and carbamate insecticides in water and food. Sens. Actuators B Chem. 2008, 133, 195–201.
[11]  Montesinos, T.; Perez-Munguia, S.; Valdez, F.; Marty, J.L. Disposable cholinesterase biosensor for the detection of pesticides in water-miscible organic solvents. Anal. Chim. Acta 2001, 431, 231–237.
[12]  Makower, A.; Halamek, J.; Skladal, P.; Kernchen, F.; Scheller, F.W. New principle of direct real-time monitoring of the interaction of cholinesterase and its inhibitors by piezolectric biosensor. Biosens. Bioelectron. 2003, 18, 1329–1337.
[13]  Choi, B.G.; Park, H.; Park, T.J.; Kim, D.H.; Lee, S.Y.; Hong, W.H. Development of the electrochemical biosensor for organophosphate chemicals using CNT/ionic liquid bucky gel electrode. Electrochem. Commun. 2009, 11, 672–675.
[14]  Chough, S.H.; Mulchandani, A.; Mulchandani, P.; Chen, W.; Wang, J.; Rogers, K.R. Organophosphorus hydrolase-based amperometric sensor: Modulation of sensitivity and substrate selectivity. Electroanalysis 2002, 14, 273–276.
[15]  Lei, Y.; Mulchandani, P.; Wang, J.; Chen, W.; Mulchandani, A. Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents. Environ. Sci. Technol. 2005, 39, 8853–8857.
[16]  Liu, N.Y.; Cai, X.P.; Lei, Y.; Zhang, Q.; Chan-Park, M.B.; Li, C.M.; Chen, W.; Mulchandani, A. Single-walled carbon nanotube based real-time organophosphate detector. Electroanal 2007, 19, 616–619.
[17]  Mulchandani, A.; Mulchandani, P.; Chen, W.; Wang, J.; Chen, L. Amperometric thick film strip electrodes for monitoring organophosphate nerve agents based on immobilized organophosphorus hydrolase. Anal. Chem. 1999, 71, 2246–2249.
[18]  Mulchandani, P.; Chen, W.; Mulchandani, A. Flow injection amperometric enzyme biosensor for direct determination of organophosphate nerve agents. Environ. Sci. Technol. 2001, 35, 2562–2565.
[19]  Sacks, V.; Eshkenazi, I.; Neufeld, T.; Dosoretz, C.; Rishpon, J. Immobilized parathion hydrolase: An amperometric sensor for parathion. Anal. Chem. 2000, 72, 2055–2058.
[20]  Wang, J.; Krause, R.; Block, K.; Musameh, M.; Mulchandani, A.; Schoning, M.J. Flow injection amperometric detection of OP nerve agents based on an organophosphorus-hydrolase biosensor detector. Biosens. Bioelectron. 2003, 18, 255–260.
[21]  Wang, J.; Chen, L.; Mulchandani, A.; Mulchandani, P.; Chen, W. Remote biosensor for in-situ monitoring of organophosphate nerve agents. Electroanalysis 1999, 11, 866–869.
[22]  Skladal, P. Biosensors based on cholinesterase for detection of pesticides. Food Technol. Biotech. 1996, 34, 43–49.
[23]  Pohanka, M.; Musilek, K.; Kuca, K. Progress of biosensors based on cholinesterase inhibition. Curr. Med. Chem. 2009, 16, 1790–1798.
[24]  Wang, L.H.; Zhang, L.; Chen, H.L. Enzymatic biosensors for detection of organophosphorus pesticides. Prog. Chem. 2006, 18, 440–452.
[25]  Prieto-Simon, B.; Campas, M.; Marty, J.L. Biomolecule immobilization in biosensor development: Tailored strategies based on affinity interactions. Protein Pept. Lett. 2008, 15, 757–763.
[26]  Yang, J.J.; Yang, C.; Jiang, H.; Qiao, C.L. Overexpression of methyl parathion hydrolase and its application in detoxification of organophosphates. Biodegradation 2008, 19, 831–839.
[27]  Yang, C.; Freudl, R.; Qiao, C.L.; Mulchandani, A. Cotranslocation of methyl parathion hydrolase to the periplasm and of organophosphorus hydrolase to the cell surface of Escherichia coli by the Tat pathway and ice nucleation protein display system. Appl. Environ. Microbiol. 2010, 76, 434–440.
[28]  Yang, C.; Song, C.J.; Freudl, R.; Mulchandani, A.; Qiao, C.L. Twin-arginine translocation of methyl parathion hydrolase in Bacillus subtilis. Environ. Sci. Technol. 2010, 44, 7607–7612.
[29]  Yang, C.; Song, C.J.; Mulchandani, A.; Qiao, C.L. Genetic Engineering of stenotrophomonas strain YC-1 to possess a broader substrate range for organophosphates. J. Agric. Food Chem. 2010, 58, 6762–6766.
[30]  Johnson, D.L.; Martin, L.L. Controlling protein orientation at interfaces using histidine tags: An alternative to Ni/NTA. J. Am. Chem. Soc. 2005, 127, 2018–2019.
[31]  Baldini, F.; Bechi, P.; Cianchi, F.; Falai, A.; Fiorillo, C.; Nassi, P. Analysis of the optical properties of bile. J. Biomed. Opt. 2000, 5, 321–329.
[32]  Chen, G.P.; Xia, R.M.; Gong, J.; Shou, W.D. Study on pH effect in process of an entero-gastric fiber-optic sensor design. Sensors 2002, 2, 447–454.
[33]  Tran, M.C. General Characterisitcs. In Biosensors; Tran, M.C., Ed.; Chapman & Hall: London, UK, 1993; pp. 7–10.
[34]  Fraden, J. Sensor Characteristics. In Handbook of Modern Sensors Physics, Designs, and Applications; Fraden, J., Ed.; Springer Science + Business Media, LLC 2010: New York, NY, USA, 2010; pp. 13–52.
[35]  Yang, W.; Zhou, Y.F.; Dai, H.P.; Bi, L.J.; Zhang, Z.P.; Zhang, X.H.; Leng, Y.; Zhang, X.E. Application of methyl parathion hydrolase (MPH) as a labeling enzyme. Anal. Bioanal. Chem. 2008, 390, 2133–2140.
[36]  Ji, X.J.; Zheng, J.Y.; Xu, J.M.; Rastogi, V.K.; Cheng, T.C.; DeFrank, J.J.; Leblanc, R.M. (CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. J. Phys. Chem. B 2005, 109, 3793–3799.
[37]  Mulchandani, A.; Kaneva, I.; Chen, W. Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 2. Fiber optic microbial biosensor. Anal. Chem. 1998, 70, 5042–5046.
[38]  Mulchandani, P.; Mulchandani, A.; Kaneva, I.; Chen, W. Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode. Biosens. Bioelectron. 1999, 14, 77–85.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133