全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Toxins  2012 

Sheep Monoclonal Antibodies Prevent Systemic Effects of Botulinum Neurotoxin A1

DOI: 10.3390/toxins4121565

Keywords: botulinum neurotoxin, botulinum toxin, BoNT, BoNT/A1, BoNT/A2, monoclonal antibodies, sheep monoclonal antibodies, immunotherapy, passive immunization, botulism

Full-Text   Cite this paper   Add to My Lib

Abstract:

Botulinum neurotoxin (BoNT) is responsible for causing botulism, a potentially fatal disease characterized by paralysis of skeletal muscle. Existing specific treatments include polyclonal antisera derived from immunized humans or horses. Both preparations have similar drawbacks, including limited supply, risk of adverse effects and batch to batch variation. Here, we describe a panel of six highly protective sheep monoclonal antibodies (SMAbs) derived from sheep immunized with BoNT/A1 toxoid (SMAbs 2G11, 4F7) or BoNT/A1 heavy chain C-terminus (HcC) (SMAbs 1G4, 5E2, 5F7, 16F9) with or without subsequent challenge immunization with BoNT/A1 toxin. Although each SMAb bound BoNT/A1 toxin, differences in specificity for native and recombinant constituents of BoNT/A1 were observed. Structural differences were suggested by pI (5E2 = 8.2; 2G11 = 7.1; 4F7 = 8.8; 1G4 = 7.4; 5F7 = 8.0; 16F9 = 5.1). SMAb protective efficacy vs. 10,000 LD50 BoNT/A1 was evaluated using the mouse lethality assay. Although not protective alone, divalent and trivalent combinations of SMabs, IG4, 5F7 and/or 16F9 were highly protective. Divalent combinations containing 0.5–4 μg/SMAb (1–8 μg total SMAb) were 100% protective against death with only mild signs of botulism observed; relative efficacy of each combination was 1G4 + 5F7 > 1G4 + 16F9 >> 5F7 + 16F9. The trivalent combination of 1G4 + 5F7 + 16F9 at 0.25 μg/SMAb (0.75 μg total SMAb) was 100% protective against clinical signs and death. These results reflect levels of protective potency not reported previously.

References

[1]  Middlebrook, J.L.; Franz, D.R. Botulinum toxins. In Medical Aspects of Chemical and Biological Warfare; Sidell, F.R., Takafuji, E.T., Franz, D.R., Eds.; Office of The Surgeon General at TMM Publications: Washington, DC, USA, 1997; pp. 643–651.
[2]  Simpson, L.L. Identification of the major steps in botulinum toxin action. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 167–193, doi:10.1146/annurev.pharmtox.44.101802.121554.
[3]  Masuyer, G.; Thiyagarajan, N.; James, P.L.; Marks, P.M.; Chaddock, J.A.; Acharya, K.R. Crystal structure of a catalytically active, non-toxic endopeptidase derivative of clostridium botulinum toxin a. Biochem. Biophys. Res. Commun. 2009, 381, 50–53, doi:10.1016/j.bbrc.2009.02.003.
[4]  Meunier, F.A.; Schiavo, G.; Molgo, J. Botulinum neurotoxins: From paralysis to recovery of functional neuromuscular transmission. J. Physiol. Paris 2002, 96, 105–113, doi:10.1016/S0928-4257(01)00086-9.
[5]  Truong, D.D.; Stenner, A.; Reichel, G. Current clinical applications of botulinum toxin. Curr. Pharm. Des. 2009, 15, 3671–3680, doi:10.2174/138161209789271843.
[6]  Osborne, S.L.; Latham, C.F.; Wen, P.J.; Cavaignac, S.; Fanning, J.; Foran, P.G.; Meunier, F.A. The janus faces of botulinum neurotoxin: Sensational medicine and deadly biological weapon. J. Neurosci. Res. 2007, 85, 1149–1158, doi:10.1002/jnr.21171.
[7]  Cai, S.; Singh, B.R.; Sharma, S. Botulism diagnostics: From clinical symptoms to in vitro assays. Crit. Rev. Microbiol. 2007, 33, 109–125, doi:10.1080/10408410701364562.
[8]  Baldwin, M.R.; Tepp, W.H.; Przedpelski, A.; Pier, C.L.; Bradshaw, M.; Johnson, E.A.; Barbieri, J.T. Subunit vaccine against the seven serotypes of botulism. Infect. Immun. 2008, 76, 1314–1318, doi:10.1128/IAI.01025-07.
[9]  Arnon, S.S.; Schechter, R.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Hauer, J.; Layton, M.; et al. Botulinum toxin as a biological weapon: Medical and public health management. JAMA 2001, 285, 1059–1070.
[10]  Pless, D.D.; Torres, E.R.; Reinke, E.K.; Bavari, S. High-affinity, protective antibodies to the binding domain of botulinum neurotoxin type a. Infect. Immun. 2001, 69, 570–574, doi:10.1128/IAI.69.1.570-574.2001.
[11]  Amersdorfer, P.; Wong, C.; Chen, S.; Smith, T.; Deshpande, S.; Sheridan, R.; Finnern, R.; Marks, J.D. Molecular characterization of murine humoral immune response to botulinum neurotoxin type a binding domain as assessed by using phage antibody libraries. Infect. Immun. 1997, 65, 3743–3752.
[12]  Nowakowski, A.; Wang, C.; Powers, D.B.; Amersdorfer, P.; Smith, T.J.; Montgomery, V.A.; Sheridan, R.; Blake, R.; Smith, L.A.; Marks, J.D. Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proc. Natl. Acad. Sci. USA 2002, 99, 11346–11350.
[13]  Cheng, L.W.; Stanker, L.H.; Henderson, T.D., 2nd; Lou, J.; Marks, J.D. Antibody protection against botulinum neurotoxin intoxication in mice. Infect. Immun. 2009, 77, 4305–4313, doi:10.1128/IAI.00405-09.
[14]  Stanker, L.H.; Merrill, P.; Scotcher, M.C.; Cheng, L.W. Development and partial characterization of high-affinity monoclonal antibodies for botulinum toxin type a and their use in analysis of milk by sandwich elisa. J. Immunol. Methods 2008, 336, 1–8, doi:10.1016/j.jim.2008.03.003.
[15]  Binz, T.; Kurazono, H.; Wille, M.; Frevert, J.; Wernars, K.; Niemann, H. The complete sequence of botulinum neurotoxin type a and comparison with other clostridial neurotoxins. J. Biol. Chem. 1990, 265, 9153–9158.
[16]  LaPenotiere, H.F.; Clayton, M.A.; Middlebrook, J.L. Expression of a large, nontoxic fragment of botulinum neurotoxin serotype a and its use as an immunogen. Toxicon 1995, 33, 1383–1386, doi:10.1016/0041-0101(95)00072-T.
[17]  Osborne, J.; Harrison, P.; Butcher, R.; Ebsworth, N.; Tan, K. Novel super-high affinity sheep monoclonal antibodies against cea bind colon and lung adenocarcinoma. Hybridoma 1999, 18, 183–191, doi:10.1089/hyb.1999.18.183.
[18]  Coffino, P.; Laskov, R.; Scharff, M.D. Immunoglobulin production: Method for quantitatively detecting variant myeloma cells. Science 1970, 167, 186–188.
[19]  Bowmer, E.J. Preparation and assay of the international standards for clostridium botulinum type a, b, c, d and e antitoxins. Bull. Wld. Hlth. Org. 1963, 29, 701–709.
[20]  Hanna, P.A.; Jankovic, J. Mouse bioassay versus western blot assay for botulinum toxin antibodies: Correlation with clinical response. Neurology 1998, 50, 1624–1629, doi:10.1212/WNL.50.6.1624.
[21]  Brown, D.R.; Lloyd, J.P.; Schmidt, J.J. Identification and characterization of a neutralizing monoclonal antibody against botulinum neurotoxin serotype f, following vaccination with active toxin. Hybridoma 1997, 16, 447–456, doi:10.1089/hyb.1997.16.447.
[22]  Mullaney, B.P.; Pallavicini, M.G.; Marks, J.D. Epitope mapping of neutralizing botulinum neurotoxin a antibodies by phage display. Infect. Immun. 2001, 69, 6511–6514, doi:10.1128/IAI.69.10.6511-6514.2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133