全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Toxins  2012 

Vixapatin (VP12), a C-Type Lectin-Protein from Vipera xantina palestinae Venom: Characterization as a Novel Anti-angiogenic Compound

DOI: 10.3390/toxins4100862

Keywords: C-type lectin protein, Vixapatin (VP12), α2β1, integrin, adhesion, migration, tube formation, Matrigel, CAM assay, angiogenesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

A C-type lectin-like protein (CTL), originally identified as VP12 and lately named Vixapatin, was isolated and characterized from Israeli viper Vipera xantina palestinae snake venom. This CTL was characterized as a selective α2β1 integrin inhibitor with anti-melanoma metastatic activity. The major aim of the present study was to prove the possibility that this protein is also a potent novel anti-angiogenic compound. Using an adhesion assay, we demonstrated that Vixapatin selectively and potently inhibited the α2 mediated adhesion of K562 over-expressing cells, with IC50 of 3 nM. 3 nM Vixapatin blocked proliferation of human dermal microvascular endothelial cells (HDMEC); 25 nM inhibited collagen I induced migration of human fibrosarcoma HT-1080 cells; and 50 nM rat C6 glioma and human breast carcinoma MDA-MB-231 cells. 1 μM Vixapatin reduced HDMEC tube formation by 75% in a Matrigel assay. Furthermore, 1 μM Vixapatin decreased by 70% bFGF-induced physiological angiogenesis, and by 94% C6 glioma-induced pathological angiogenesis, in shell-less embryonic quail chorioallantoic membrane assay. Vixapatin’s ability to inhibit all steps of the angiogenesis process suggest that it is a novel pharmacological tool for studying α2β1 integrin mediated angiogenesis and a lead compound for the development of a novel anti-angiogenic/angiostatic/anti-cancer drug.

References

[1]  Folkman, J. Angiogenesis: An organizing principle for drug discovery? Nat. Rev. Drug Discov. 2007, 6, 273–286, doi:10.1038/nrd2115.
[2]  Kini, R.M. Toxins in thrombosis and haemostasis: Potential beyond imagination. J. Thromb. Haemost. 2011, 9, 195–208, doi:10.1111/j.1538-7836.2011.04279.x.
[3]  Vanhoorelbeke, K.; Ulrichts, H.; Schoolmeester, A.; Deckmyn, H. Inhibition of platelet adhesion to collagen as a new target for antithrombotic drugs. Curr. Drug Targets Cardiovasc. Haematol. Disord. 2003, 3, 125–140, doi:10.2174/1568006033481500.
[4]  Chung, C.-H.; Wu, W.-B.; Huang, T.-F. Aggretin, a snake venom-derived endothelial integrin alpha2beta1 angiogenesis drug development agonist, induces angiogenesis via expression of vascular endothelial growth factor. Blood 2004, 103, 2105–2113, doi:10.1182/blood-2003-07-2483.
[5]  Eble, J.A.; Niland, S.; Dennes, A.; Schmidt-Hederich, A.; Bruckner, P.; Brunner, G. Rhodocetin antagonizes stromal tumor invasion in vitro and other alpha2beta1 angiogenesis drug developmen tintegrin-mediated cell functions. Matrix Biol. 2002, 21, 547–558, doi:10.1016/S0945-053X(02)00068-9.
[6]  Marcinkiewicz, C. Functional characteristic of snake venom disintegrins: Potential therapeutic implication. Curr. Pharm. Des. 2005, 11, 815–827, doi:10.2174/1381612053381765.
[7]  Arlinghaus, F.T.; Eble, J.A. C-type lectin-like proteins from snake venoms. Toxicon 2012, 60, 512–519, doi:10.1016/j.toxicon.2012.03.001.
[8]  Drickamer, K. C-type lectin-like domains. Curr. Opin. Struct. Biol. 1999, 9, 585–590, doi:10.1016/S0959-440X(99)00009-3.
[9]  Lu, Q.; Clementson, K.J.; Clementson, J.M. Snake venom c-type lectins interacting with platelet receptors. Tox. Rev. 2007, 26, 77–93, doi:10.1080/15569540600567438.
[10]  Morita, T. Structures and functions of snake venom clps (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and platelet-modulating activities. Toxicon 2005, 45, 1099–1114, doi:10.1016/j.toxicon.2005.02.021.
[11]  Hynes, O.R. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 1992, 69, 11–25, doi:10.1016/0092-8674(92)90115-S.
[12]  Senger, D.R.; Claffey, K.P.; Benes, J.E.; Perruzzi, C.A.; Sergiou, A.P.; Detmar, M. Angiogenesis promoted by vascular endothelial growth factor: Regulation through α1β1and α2β1integrins. Proc. Natl. Acad. Sci. USA 1997, 94, 13612–13617.
[13]  Lussier, C.; Basora, N.; Bouatrouss, Y.; Beaulieu, J.-F. Integrins as mediators of epithelial cell-matrix interactions in the human small intestinal mucosa. Microsc. Res. Tech. 2000, 51, 169–178, doi:10.1002/1097-0029(20001015)51:2<169::AID-JEMT8>3.0.CO;2-A.
[14]  Veit, G.; Zwolanek, D.; Eckes, B.; Niland, S.; Kapyla, J.; Zweers, M.C.; Ishada-Yamamoto, A.; Krieg, T.; Heino, J.; Eble, J.A.; et al. Collagen xxiii, novel ligand for integrin α2β1 in the epidermis. J. Biol. Chem. 2011, 286, 27804–27813.
[15]  Dickeson, S.K.; Mathis, N.L.; Rahman, M.; Bergelson, J.M.; Santoro, S.A. Determinants of ligand binding specificity of the α1β1 and α2β1 integrins. J. Biol. Chem. 1999, 274, 32182–32191.
[16]  Lecut, C.; Feijge, M.A.H.; Cosemans, J.M.E.M.; Jandrot-Perrus, M.; Heemskerk, J.W.M. Fibrillar type I collagens enhance platelet-dependent thrombin generation via glycoprotein vi with direct support of α2β1 but not αIIbβ3 integrin. Thromb. Haemost. 2005, 94, 107–114.
[17]  Mergia, E.; Russwurm, M.; Zoidl, G.; Koesling, D. Major occurrence of the new α2β1 isoform of no-sensitive guanylyl cyclase in brain. Cell Signal. 2003, 15, 189–195, doi:10.1016/S0898-6568(02)00078-5.
[18]  Friedl, P.; Maaser, K.; Klein, C.E.; Niggemann, B.; Krohne, G.; Zanker, K.S. Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of α2 and β1 integrins and CD44. Cancer Res. 1997, 57, 2061–2070.
[19]  Maaser, K.; Wolf, K.; Klein, C.E.; Niggemann, B.; Zanker, K.S.; Brocker, E.-B.; Friedl, P. Functional hierarchy of simultaneously expressed adhesion receptors: Integrin α2β1 but not CD44 mediates MV3 melanoma cell migration and matrix reorganization within three-dimensional hyaluronan-containing collagen matrices. Mol. Biol. Cell 1999, 10, 3067–3079.
[20]  Chan, B.; Matsuura, N.; Takada, Y.; Zetter, B.; Hemler, M. In vitro and in vivo consequences of vla-2 expression on rhabdomyosarcoma cells. Science 1991, 251, 1600–1602.
[21]  Fishman, D.A.; Kearns, A.; Chilukuri, K.; Bafetti, L.M.; O’Toole, E.A.; Georgacopoulos, J.; Ravosa, M.J.; Stack, M.S. Metastatic dissemination of human ovarian epithelial carcinoma is promoted by α2β1-integrin-mediated interaction with type I collagen. Invasion Metastasis 1998, 18, 15–26, doi:10.1159/000024495.
[22]  Lochter, A.; Navre, M.; Werb, Z.; Bissell, M.J. α1 and α2 integrins mediate invasive activity of mouse mammary carcinoma cells through regulation of stromelysin-1 expression. Mol. Biol. Cell 1999, 10, 271–282.
[23]  Avraamides, C.J.; Garmy-Susini, B.; Varner, J.A. Integrins in angiogenesis and lymphangiogenesis. Nat. Rev. Cancer 2008, 8, 604–617, doi:10.1038/nrc2353.
[24]  Marcinkiewicz, C.; Lobb, R.R.; Marcinkiewicz, M.M.; Daniel, J.L.; Smith, J.B.; Dangelmaier, C.; Weinreb, P.H.; Beacham, D.A.; Niewiarowski, S. Isolation and characterization of EMS16, a C-lectin type protein from Echis multisquamatus venom, a potent and selective inhibitor of the α2β1 integrin. Biochemistry 2000, 39, 9859–9867.
[25]  Eble, J.A.; Beermann, B.; Hinz, H.-J.; Schmidt-Hederich, A. α2β1 integrin is not recognized by rhodocytin but is the specific, high affinity target of rhodocetin, an RGD-independent disintegrin and potent inhibitor of cell adhesion to collagen. J. Biol. Chem. 2001, 276, 12274–12284.
[26]  Staniszewska, I.; Walsh, E.M.; Rothman, V.L.; Gaathon, A.; Tuszynski, G.P.; Calvete, J.J.; Lazarovici, P.; Marcinkiewicz, C. Effect of VP12 and viperistatin on inhibition of collagen receptors: Dependent melanoma metastasis. Cancer Biol. Ther. 2009, 8, 1507–1516, doi:10.4161/cbt.8.15.8999.
[27]  Momic, T.; Arlinghaus, F.T.; Arien-Zakay, H.; Katzhendler, J.; Eble, J.A.; Marcinkiewicz, C.; Lazarovici, P. Pharmacological aspects of Vipera xantina palestinae venom. Toxins 2011, 3, 1420–1432, doi:10.3390/toxins3111420.
[28]  Eble, J.A.; Tuckwell, D.S. The alpha2beta1 integrin inhibitor rhodocetin binds to the A-domain of the integrin alpha2 subunit proximal to the collagen-binding site. Biochem. J. 2003, 376, 77–85, doi:10.1042/BJ20030373.
[29]  Arlinghaus, F.T.; Momic, T.; Abu Ammar, N.; Shai, E.; Spectre, G.; Varon, D.; Marcinkiewicz, C.; Lazarovici, P.; Eble, J.A. Detection of α2β1 integrin inhibitor(s) with anti-platelet properties in the venom of Vipera palaestinae. Toxicon 2012. submitted for publication.
[30]  Kaikai, S.; Yuchen, S.; Lili, J.; Zhengtao, W. Critical role of c-Jun N-terminal kinase in regulating bFGF-induced angiogenesis in vitro. J. Biochem. 2011, 150, 189–197, doi:10.1093/jb/mvr060.
[31]  Zutter, M.M.; Santoro, S.A.; Staatz, W.D.; Tsung, Y.L. Re-expression of the alpha 2 beta 1 integrin abrogates the malignant phenotype of breast carcinoma cells. Proc. Natl. Acad. Sci. USA 1995, 92, 7411–7415, doi:10.1073/pnas.92.16.7411.
[32]  Tuckwell, D.S.; Smith, L.; Korda, M.; Askari, J.A.; Santoso, S.; Barnes, M.J.; Farndale, R.W.; Humphries, M.J. Monoclonal antibodies identify residues 199-216 of the integrin alpha2 vWFA domain as a functionally important region within alpha2beta1. Biochem. J. 2000, 350, 485–493.
[33]  Kern, A.; Marcantonio, E.E. Role of the I-domain in collagen binding specificity and activation of the integrins α1β1 and α2β1. J. Cell Physiol. 1998, 176, 634–641, doi:10.1002/(SICI)1097-4652(199809)176:3<634::AID-JCP20>3.0.CO;2-Y.
[34]  Ruggiero, F.; Comte, J.; Cabanas, C.; Garrone, R. Structural requirements for alpha 1 beta 1 and alpha 2 beta 1 integrin mediated cell adhesion to collagen V. J. Cell Sci. 1996, 109, 1865–1874.
[35]  Lichtner, R.B.; Howlett, A.R.; Lerch, M.; Xuan, J.-A.; Brink, J.; Langton-Webster, B.; Schneider, M.R. Negative cooperativity between alpha3beta1 and alpha2beta1 integrins in human mammary carcinoma MDA MB 231 cells. Exp. Cell Res. 1998, 240, 368–376, doi:10.1006/excr.1998.4012.
[36]  Obeso, J.; Weber, J.; Auerbach, R. A hemangioendothelioma-derived cell line: Its use as a model for the study of endothelial cell biology. Lab Invest. 1990, 63, 259–269.
[37]  Zhang, Z.; Ramirez, N.E.; Yankeelov, T.E.; Li, Z.; Ford, L.E.; Qi, Y.; Pozzi, A.; Zutter, M.M. Alpha2beta1 integrin expression in the tumor microenvironment enhances tumor angiogenesis in a tumor cell-specific manner. Blood 2008, 111, 1980–1988, doi:10.1182/blood-2007-06-094680.
[38]  Parsons-Wingerter, P.; Lwai, B.; Yang, M.C.; Elliott, K.E.; Milaninia, A.; Redlitz, A.; Clark, J.I.; Sage, E.H. A novel assay of angiogenesis in the quail chorioallantoic membrane: Stimulation by bfgf and inhibition by angiostatin according to fractal dimension and grid intersection. Microvasc. Res. 1998, 55, 201–214, doi:10.1006/mvre.1998.2073.
[39]  Giannopoulou, E.; Katsoris, P.; Hatziapostolou, M.; Kardamakis, D.; Kotsaki, E.; Polytarchou, C.; Parthymou, A.; Papaioannou, S.; Papadimitriou, E. X-rays modulate extracellular matrix in vivo. Int. J. Cancer 2001, 94, 690–698, doi:10.1002/ijc.1535.
[40]  Yang, L.; Lin, Z.; Lin, J.; Weng, S.; Huang, Q.; Zhang, P.; Fu, J. Antitumor effect of endostatin overexpressed in C6 glioma cells is associated with the down-regulation of VEGF. Int. J. Oncol. 2011, 38, 465–471.
[41]  Brill, A.; Dashevsky, O.; Rivo, J.; Gozal, Y.; Varon, D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc. Res. 2005, 67, 30–38, doi:10.1016/j.cardiores.2005.04.007.
[42]  Niewiarowska, J.; Brézillon, S.; Sacewicz-Hofman, I.; Bednarek, R.; Maquart, F.-X.; Malinowski, M.; Wiktorska, M.; Wegrowski, Y.; Cierniewski, C.S. Lumican inhibits angiogenesis by interfering with α2β1 receptor activity and downregulating mmp-14 expression. Thromb. Res. 2011, 128, 452–457, doi:10.1016/j.thromres.2011.06.011.
[43]  Bix, G.; Fu, J.; Gonzalez, E.M.; Macro, L.; Barker, A.; Campbell, S.; Zutter, M.M.; Santoro, S.A.; Kim, J.K.; Hook, M.; et al. Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through α2β1 integrin. J. Cell Biol. 2004, 166, 97–109, doi:10.1083/jcb.200401150.
[44]  Woodall, B.P.; Nystrom, A.; Iozzo, R.A.; Eble, J.A.; Niland, S.; Krieg, T.; Eckes, B.; Pozzi, A.; Iozzo, R.V. Integrin α2β1 is the required receptor for endorepellin angiostatic activity. J. Biol. Chem. 2008, 283, 2335–2343.
[45]  Chung, C.-H.; Wu, W.-B.; Huang, T.-F. Aggretin, a snake venom-derived endothelial integrin α2β1 agonist, induces angiogenesis via expression of vascular endothelial growth factor. Blood 2004, 103, 2105–2113, doi:10.1182/blood-2003-07-2483.
[46]  Sabherwal, Y.; Rothman, V.L.; Dimitrov, S.; L’Heureux, D.Z.; Marcinkiewicz, C.; Sharma, M.; Tuszynski, G.P. Integrin α2β1 mediates the anti-angiogenic and anti-tumor activities of angiocidin, a novel tumor-associated protein. Exp. Cell Res. 2006, 312, 2443–2453, doi:10.1016/j.yexcr.2006.04.009.
[47]  Kim, H.-K.; Oh, D.-S.; Lee, S.-B.; Ha, J.-M.; Joe, Y.A. Antimigratory effect of TK1-2 is mediated in part by interfering with integrin α2β1. Mol. Cancer Ther. 2008, 7, 2133–2141, doi:10.1158/1535-7163.MCT-07-2405.
[48]  Antonio, S.J.D.; Zoeller, J.J.; Habursky, K.; Turner, K.; Pimtong, W.; Burrows, M.; Choi, S.; Basra, S.; Bennett, J.S.; DeGrado, W.F.; et al. A key role for the integrin α2β1 in experimental and developmental angiogenesis. Am. J. Pathol. 2009, 175, 1338–1347, doi:10.2353/ajpath.2009.090234.
[49]  Dolla, J.-P.; Rezvan, A.; Allen, F.D.; Lazarovici, P.; Lelkes, P.I. Nerve growth factor-induced migration of endothelial cells. J. Pharmacol. Exp. Ther. 2005, 315, 1220–1227, doi:10.1124/jpet.105.093252.
[50]  Bazan-Socha, S.; Kisiel, D.G.; Young, B.; Theakston, R.D.G.; Calvete, J.J.; Sheppard, D.; Marcinkiewicz, C. Structural requirements of MLD-containing disintegrins for functional interaction with alpha4beta1 and alpha9beta1 integrins. Biochemistry 2004, 43, 1639–1647.
[51]  Staniszewska, I.; Zaveri, S.; Valle, L.D.; Oliva, I.; Rothman, V.L.; Croul, S.E.; Roberts, D.D.; Mosher, D.F.; Tuszynski, G.P.; Marcinkiewicz, C. Interaction of α9β1 integrin with thrombospondin-1 promotes angiogenesis. Circ. Res. 2007, 100, 1308–1316, doi:10.1161/01.RES.0000266662.98355.66.
[52]  Reich, R.; Royce, L.; Martin, G.R. Eicosapentaenoic acid reduces the invasive and metastatic activities of malignant tumor cells. Biochem. Biophys. Res. Commun. 1989, 160, 559–564, doi:10.1016/0006-291X(89)92469-8.
[53]  Brown, M.C.; Staniszewska, I.; del Valle, L.; Tuszynski, G.P.; Marcinkiewicz, C. Angiostatic activity of obtustatin as α1β1 integrin inhibitor in experimental melanoma growth. Int. J. Cancer 2008, 123, 2195–2203, doi:10.1002/ijc.23777.
[54]  Lazarovici, P.; Gazit, A.; Staniszewska, I.; Marcinkiewicz, C.; Lelkes, P.I. Nerve growth factor (NGF) promotes angiogenesis in the quail chorioallantoic membrane. Endothelium 2006, 13, 51–59, doi:10.1080/10623320600669053.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133