In this paper, a fast automatic precision approaching system is developed for electrochemical nanofabrication using visual and force-displacement sensing. Before the substrate is fabricated, the template should approach the substrate accurately to establish the initial gap between the template and substrate. During the approaching process, the template is first quickly moved towards the substrate by the stepping motor until a specified gap is detected by the visual feedback. Then, the successive approach using the switch of macro-micro motion with a force-displacement sensing module is triggered to make the template contact with the substrate to nanometre accuracy. The contact force is measured by the force-displacement sensing module which employs the high-resolution capacitive displacement sensor and flexure compliant mechanism. The high sensitivity of this capacitive displacement sensor ensures high accuracy of the template-substrate contact. The experimental results show that the template can reach the substrate accurately and smoothly, which verifies the effectiveness of the proposed approaching system with the visual and the force-displacement sensing modules.
References
[1]
Hsu, K.H.; Schultz, P.L.; Ferreira, P.M.; Fang, N.X. Electrochemical nanoimprinting with solid-state superionic stamps. Nano Lett. 2007, 7, 446–451.
[2]
Namatsu, H.; Oda, M.; Yokoo, A.; Fukuda, M.; Irisa, K.; Tsurumi, S.; Komatsu, K. Chemical nanoimprint lithography for step-and-repeat Si patterning. J. Vac. Sci. Technol. 2007, B25, 2321–2324.
[3]
Zhang, L.; Ma, X.Z.; Zhuang, J.L.; Qiu, C.K.; Du, C.L.; Tang, J.; Tian, Z.W. Microfabrication of a diffractive microlens array on n-GaAs by an efficient electrochemical method. Adv. Mater. 2007, 19, 3912–3918.
[4]
Simeone, F.C.; Albonetti, C.; Cavallini, M. Progress in Micro- and nanopatterning via electrochemical lithography. J. Phys. Chem. C 2009, 113, 18987–18994.
[5]
Lai, L.J.; Gu, G.Y.; Zhu, L.M. Design and control of a decoupled two degree of freedom translational parallel micro-positioning stage. Rev. Sci. lustrum. 2012, 83, 045105:1–045105:17.
[6]
Syed Asif, S.A.; Wahl, K.J.; Colton, R.J. Nanoindentation and contact stiffness measurement using force modulation with a capacitive load-displacement transducer. Rev. Sci. Instrum. 1999, 70, 2408–2413.
[7]
Gao, W.; Hocken, R.J.; Patten, J.A.; Lovingood, J.; Lucca, D.A. Construction and testing of a nanomachining instrument. Precis. Eng. 2000, 24, 320–328.
[8]
Nohava, J.; Randall, N.X.; Conte, N. Novel ultra nanoindentation method with extremely low thermal drift: Principle and experimental results. J. Mater. Res. 2009, 24, 873–882.
[9]
Ahmed, N.; Carlson, A.; Rogers, J.A.; Ferreira, P.M. Automated micro-transfer printing with cantilevered stamps. J. Manuf. Process. 2012, 14, 90–97.
[10]
Han, C.; Lee, H.; Chung, C.C. Automatic approaching method for atomic force microscope using a Gaussian laser beam. Rev. Sci. Instrum. 2009, 80, 073705:1–073705:7.
[11]
Sikora, A.; Bednarz, L. The accuracy of an optically supported fast approach solution for scanning probe microscopy (SPM)-measuring devices. Meas. Sci. Technol. 2011, 22, doi:10.1088/0957-0233/22/9/094015.
[12]
Kim, D.; Lee, D.Y.; Gweon, D.G. A new nano-accuracy AFM system for minimizing Abbe errors and the evaluation of its measuring uncertainty. Ultramicroscopy 2007, 107, 322–328.
[13]
Park, J.J.; Kwon, K.; Bang, J.; Cho, N.; Han, C.S.; Choi, N.S. Development of a precision indentation and scratching system with a tool force and displacement control module. Rev. Sci. Instrum. 2007, 78, 045102:1–045102:8.
[14]
Park, J.H.; Shim, J.; Lee, D.Y. A compact vertical scanner for atomic force microscopes. Sensors 2010, 10, 10673–10682.
[15]
D-015.D-050.D-100 Sub-nanometer-resolution capacitive position sensors. Available online: http://www.pi-china.cn/new%20version/products/PDF/D015_050_100_Datasheet.pdf (accessed on 20 April 2012).
[16]
Qu, Y.-D.; Cui, C.-S.; Chen, S.-B.; Li, J.-Q. A fast subpixel edge detection method using Sobel-Zernike moments operator. Image Vision Comput. 2005, 23, 11–17.
[17]
Eaton, P.; West, P. Atomic Force Microscopy; Oxford University Press: Cary, NC, USA, 2010; p. 21.
[18]
Fischer-Cripps, A.C. Nanoindentation Instrumentation. In Nanoindentation; Finnie, I., Ling, F.F., Eds.; Springer: New York, NY, USA, 2011; pp. 199–211.