全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Toxins  2012 

Control of Ochratoxin A Production in Grapes

DOI: 10.3390/toxins4050364

Keywords: Ochratoxin A, prevention strategies, fungicides, biological control

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ochratoxin A (OTA) is a mycotoxin commonly present in cereals, grapes, coffee, spices, and cocoa. Even though the main objective of the food and feed chain processors and distributors is to avoid the extended contamination of plant-derived foods and animal feeds with mycotoxins, until now, complete OTA removal from foods and feedstuffs is not feasible. Prevention through pre-harvest management is the best method for controlling mycotoxin contamination. However, in the case that the contamination occurs after this stage, the hazards associated with OTA must be managed through post-harvest strategies. Due to the increasing number of fungal strains resistant to chemical fungicides and the impact of these pesticides on the environment and human health, maximum levels of chemical residues have been regulated in many products. Alternative methods are necessary to substitute or complement treatments with fungicides to control fungi under field or storage conditions. Yeasts are considered one of the most potent biocontrol agents due to their biology and non-toxic properties. Epiphytic yeasts are the major component of the microbial community on the surface of grape berries and they are evolutionarily adapted to this ecological niche. Nowadays, several yeast species included in different genera are considered as potential biocontrol agents to control both, growth of ochratoxigenic Aspergillus species and OTA accumulation.

References

[1]  Speijers, G.J.A.; van Egmond, H.P. Worldwide Ochratoxin A Levels in Food and Feeds. In Human Ochratoxicosis and Its Pathologies; Creppy, E.E., Dirheimer, M., Castegnaro, G., Eds.; John Libbey Euroto Ltd.: Montrouge, France, 1993; pp. 85–100.
[2]  Caba?es, F.J.; Accensi, F.; Bragulat, M.R.; Abarca, M.L.; Castellá, G.; Minguez, S.; Pons, A. What is the source of ochratoxin A in wine? Int. J. Food Microbiol. 2002, 79, 213–215, doi:10.1016/S0168-1605(02)00087-9.
[3]  Mantle, P.G. Risk assessment and the importance of ochratoxins. Int. Biodeterior. Biodegrad. 2002, 50, 143–146.
[4]  IARC International Agency for Research on Cancer. Some Naturally Occurring Substances: Food Items and Constituents: Heterocyclic Aromatic Amines and Mycotoxins. In IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans; IARC: Lyon, France, 1993; Volume 56, pp. 489–521.
[5]  European Commission. Commission regulation (EC) No. 123/2005 of 26 January 2005 amending regulation (EC) No. 466/2001 as regards ochratoxin A. Off. J. Eur. Union 2005, L25, 3–5.
[6]  Abramson, D. Measurement of ochratoxin A in barely extracts by liquid chromatography mass spectrometry. J. Chromatogr. 1987, 391, 315–320.
[7]  Astoreca, A.; Magnoli, C.; Barberis, C.; Combina, M.; Chiacchiera, S.M.; Dalcero, A. Ochratoxin A production in relation to ecophysiological factors by Aspergillus section Nigri strains isolated from different substrates in Argentina. Sci. Total Environ. 2007, 388, 16–23.
[8]  Suárez-Quiroz, M.; González-Rios, O.; Barel, M.; Guyot, B.; Schorr-Galindo, S.; Guiraud, J.P. Study of ochratoxin A-producing strains in coffee processing. Int. J. Food Sci. Technol. 2004, 39, 501–507.
[9]  Amézqueta, S.; González-Pe?as, E.; Murillo-Arbizu, M.; López de Cerain, A. Ochratoxin A decontamination: A review. Food Control 2009, 20, 326–333.
[10]  Codex Alimentarius Commission. Codex Alimentarius Commission Alinorm 03/12 Appendix XII. Technical Report for the 34th Session of the Codexcommittee on Food Additives and Contaminants; Codex Alimentarius Commission: Rome, Italy, 2003; pp. 100–104.
[11]  Kabak, B.; Dobson, A.D.W. Biological strategies to counteract the effects of mycotoxins. J.Food Protect. 2009, 72, 2006–2016.
[12]  Park, D.L.; Njapau, H.; Boutrif, E. Minimising Risks Posed by Mycotoxins Utilising the HACCP Concept. In Proceedings of Third Joint FAO/WHO/UNEP International Conference on Mycotoxins, Tunis, Tunisia, 3–6 March 1999; pp. 1–13. Available online: ftp://ftp.fao.org/es/esn/food/myco8b.pdf (accessed on 28 April 2012).
[13]  Riley, R.T.; Norred, W.P. Mycotoxin prevention and decontamination, corn—A case study. Atti Third Joint FAO/WHO/UNEP international conference on mycotoxins, Tunis, Tunisia, 3–6 March 1999; pp. 1–11. Available online: ftp://ftp.fao.org/es/esn/food/myco6b.pdf (accessed on 28 April 2012).
[14]  Medina, A.; Mateo, R.; Valle-Algarra, F.; Mateo, E.M.; Jiménez, M. Effect of carbendazim and physicochemical factors on the growth and ochratoxin A production of Aspergillus carbonarius isolated from grape. Int. J. Food Microbiol. 2007, 119, 230–235, doi:10.1016/j.ijfoodmicro.2007.07.053.
[15]  Lo Curto, R.; Pellicano, T.; Vilasi, F.; Munafo, P.; Dugo, G. Ochratoxin A occurrence in experimental wines in relationship with different pesticide treatments of grapes. Food Chem. 2004, 84, 71–75.
[16]  Tjamos, S.E.; Antoniou, P.P.; Kazantzidou, A.; Antonopoulos, D.F.; Papageorgiou, I.; Tjamos, E.C. Aspergillus niger and A. carbonarius in Corinth raisin and wine-producing vineyards in Greece: Population composition, ochratoxin A production and chemical control. J. Phytopathol. 2004, 152, 250–255, doi:10.1111/j.1439-0434.2004.00838.x.
[17]  Chernin, L.; Brandis, A.; Ismailov, Z.; Chet, I. Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens. Curr. Microbiol. 1996, 32, 208–212.
[18]  Molot, B.; Solanet, D. Ochratoxine: Prévention du risque. In Etude au vignoble de fongicides actifs contre Aspergillus carbonarius incidences sur la présence aux vendanges, Proceedings of Les Entretiens Viti-Vinicoles Rhone-Mediterranée, Nimes, France, 16 April 2003; pp. 18–21.
[19]  Bellí, N.; Marín, S.; Sanchis, V.; Ramos, A.J. Impact of fungicides on Aspergillus carbonarius growth and ochratoxin A production on synthetic grape-like medium and on grapes. Food Addit. Contam. 2006, 23, 1021–1029.
[20]  Palumbo, J.D.; O’Keeffe, T.L.; Mahoney, N.E. Inhibition of ochratoxin A production and growth of Aspergillus species by phenolic antioxidant compounds. Mycopathologia 2007, 164, 241–248, doi:10.1007/s11046-007-9057-0.
[21]  Aroyeun, S.O.; Adegoke, G.O. Reduction of ochratoxin A (OTA) in spiked cocoa powder and beverage using aqueous extracts and essential oils of Agramomum danielli. Afr. J. Biotechnol. 2007, 6, 612–616.
[22]  Nguefack, J.; Nguikwie, S.K.; Fotio, D.; Dongmo, B.; Amvam Zollo, P.H.; Leth, V.; Nkengfack, A.E.; Poll, L. Fungicidal potential of essential oils and fractions from Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris to control Alternaria padwickii and Bipolaris oryzae, two seed-borne fungi of rice (Oryza Sativa L.). J. Essent. Oil Res. 2007, 19, 581–587.
[23]  Valle Vega, P.; Florentino, B.L. Toxicología de Alimentos; Instituto Nacional de Salud Publica: México, México, 2000; 132–137, 149–150, pp. 132–150.
[24]  Passone, M.A.; Resnik, S.L.; Etcheverry, M.G. In vitro effect of phenolic antioxidants on germination, growth and aflatoxin B1 accumulation by peanut Aspergillus section Flavi. J. App. Microbiol. 2005, 99, 682–691, doi:10.1111/j.1365-2672.2005.02661.x.
[25]  Barberis, C.; Astoreca, A.; Fernández-Juri, M.G.; Chulze, S.; Magnoli, C.; Dalcero, A. Use of propyl paraben to control growth and ochratoxin A production by Aspergillus section Nigri species on peanut meal extract agar. Int. J. Food Microbiol. 2009, 136, 133–136, doi:10.1016/j.ijfoodmicro.2009.08.025.
[26]  Langcake, P. Disease resistance of Vitis spp. and the production of the stress metabolites resveratrol, epsilon-viniferin, alpha-viniferin and pterostilbene. Physiol. Plant Pathol. 1981, 18, 213–226.
[27]  Jeandet, P.; Bessis, R.; Sbaghi, M.; Meunier, P. Production of the phytoalexin resveratrol by grapes as a response to Botrytis attack under natural conditions. J. Phytopathol. 1995, 143, 135–139, doi:10.1111/j.1439-0434.1995.tb00246.x.
[28]  Adrian, M.; Jeandet, P.; Veneau, J.; Weston, L.A.; Bessis, R. Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. J. Chem. Ecol. 1997, 23, 1689–1702, doi:10.1023/B:JOEC.0000006444.79951.75.
[29]  Soleas, G.J.; Dam, J.; Carey, M.; Goldberg, D.M. Toward the fingerprinting of wines: Cultivar-related patterns of polyphenolic constituents in Ontario wines. J. Agric. Food Chem. 1997, 45, 3871–3880, doi:10.1021/jf970183h.
[30]  Adrian, M.; Rajaei, H.; Jeandet, P.; Veneau, J.; Bessis, R. Resveratrol oxidation in Botrytis cinerea conidia. Phytopathology 1998, 88, 472–476, doi:10.1094/PHYTO.1998.88.5.472.
[31]  Dai, G.H.; Andary, C.; Mondolot-Cosson, L.; Boubals, D. Histochemical studies on the interaction between three species of grapevine, Vitis vinifera, V. rupestris and V. rotundifolia and the downy mildew fungus, Plasmopara viticola. Physiol. Mol. Plant Pathol. 1995, 46, 177–188, doi:10.1006/pmpp.1995.1014.
[32]  Hoos, G.; Blaich, R.J. Influence of resveratrol on germination of conidia and mycelial growth of Botrytis cinerea and Phomopsis viticola. J. Phytopathol. 1990, 129, 102–110, doi:10.1111/j.1439-0434.1990.tb04293.x.
[33]  Sarig, P.; Zutkhi, Y.; Monjauze, A.; Lisker, N.; Ben-Arie, R. Phytoalexin elicitation in grape berries and their susceptibility to Rhizopus stolonifer. Physiol. Mol. Plant Pathol. 1997, 50, 337–347, doi:10.1006/pmpp.1997.0089.
[34]  Perrone, G.; Nicoletti, I.; Pascale, M.; De Rossi, A.; De Girolamo, A.; Visconti, A. Positive correlation between high levels of ochratoxin A and resveratrol-related compounds in red wines. J. Agric. Food Chem. 2007, 55, 6807–6812.
[35]  Marin, S.; Guynot, M.E.; Neira, P.; Bernadó, M.; Sanchis, V.; Ramos, A.J. Risk assessment of the use of sub-optimal levels of weak-acid preservatives in the control of mould growth on bakery products. Int. J. Food Microbiol. 2002, 79, 203–211, doi:10.1016/S0168-1605(02)00088-0.
[36]  De Costa, P.; Bezerra, P. Fungicides: Chemistry, Environmental Impact and Health Effects; Nova Biomedical: Waltham, UK, 2009.
[37]  European Commission. Commission regulation (EC) No. 299/2008 amending regulation (EC) No. 396/2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin, as regards the implementing powers conferred on the Commission. Off. J. Eur. Union 2008, 97, 67–71.
[38]  Wilson, C.L.; Wisniewski, M.E. Biological control of postharvest diseases of fruits and vegetables: An emerging technology. Annu. Rev. Phytopathol. 1989, 27, 425–441.
[39]  Janisiewicz, W.J.; Korsten, L. Biological control of postharvest diseases of fruits. Annu. Rev. Phytopathol. 2002, 40, 411–441, doi:10.1146/annurev.phyto.40.120401.130158.
[40]  Ippolito, A.; Nigro, F.; Schena, L. Control of postharvest diseases of fresh fruits and vegetables by preharvest application of antagonistic microorganisms. In Crop Management and Postharvest Handling of Horticultural Products: Disease and Disorders of Fruits and Vegetables; Dris, R., Niskanen, R., Jain, S.M., Eds.; Science Publisher Inc.: Enfield, NH, USA, 2004; pp. 1–30.
[41]  Spadaro, D.; Gullino, M.L. State of the art and future prospects of the biological control of postharvest fruit diseases. Int. J. Food Microbiol. 2004, 91, 185–194.
[42]  Pimenta, R.S.; Morais, P.B.; Rosa, C.A.; Correa, A. Utilization of Yeast in Biological Control Programs. In Yeast Biotechnology: Diversity and Applications; Satyanarayana, T., Kun, G., Eds.; Springer: Berlin, Germany, 2009.
[43]  Zhou, T.; Yu, H.; Errampali, D. Strategies for Biological Control of Fungal Diseases of Temperate Fruits. In Biological Control of Plant Diseases; Chincholkar, S.B., Mukerji, K.G., Eds.; Haworth Press: New York, NY, USA, 2007; pp. 239–277.
[44]  El-Tarabily, K.A.; Sivasithamparam, K. Potential of yeasts as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Mycoscience 2006, 47, 25–35.
[45]  Bleve, G.; Grieco, F.; Cozzi, G.; Logrieco, A.; Visconti, A. Isolation of epiphytic yeast with potential for biocontrol of Aspergillus carbonarius and A. niger on grape. Int. J. Food Microbiol. 2006, 108, 204–209, doi:10.1016/j.ijfoodmicro.2005.12.004.
[46]  Dimakopoulou, M.; Tjamos, S.E.; Antoniou, P.P.; Pietri, A.; Battilani, P.; Avramidis, N.; Markakis, E.A.; Tjamos, E.C. Phyllosphere grapevine yeast Aureobasidium pullulans reduces Aspergillus carbonarius (sour rot) incidence in wine-producing vineyards in Greece. Biol. Control 2008, 46, 158–165, doi:10.1016/j.biocontrol.2008.04.015.
[47]  Ponsone, M.L.; Chiotta, M.L.; Combina, M.; Dalcero, A.; Chulze, S. Biocontrol as a strategy to reduce the impact of ochratoxin A and Aspergillus section Nigri in grapes. Int. J. Food Microbiol. 2011, 151, 70–77.
[48]  Zahavi, T.; Cohen, L.; Weiss, B.; Schena, L.; Daus, A.; Kaplunov, T.; Zutkhi, J.; Ben-Arie, R.; Droby, S. Biological control of Botrytis, Aspergillus and Rhizopus rots on table and wine grapes in Israel. Postharvest Biol. Technol. 2000, 20, 115–124, doi:10.1016/S0925-5214(00)00118-6.
[49]  Beech, F.W.; Davenport, R. The Role of Yeast in Cidermaking. In The Yeasts; Rose, A.H., Harrison, J.S., Eds.; Academic Press: London, UK, 1970; pp. 73–139.
[50]  McLaughlin, R.J.; Wisniewski, M.E.; Wilson, C.L.; Chalutz, E. Effects of inoculum concentration and salt solutions on biological control of postharvest diseases of apple with Candida spp. Phytopathology 1990, 80, 456–461, doi:10.1094/Phyto-80-456.
[51]  Fokkema, N.J. Biological control of fungal plant diseases. Entomophaga 1996, 41, 333–342.
[52]  Benbow, J.M.; Sugar, D. Fruit surface colonization and biological control of postharvest diseases of pear by preharvest yeast applications. Plant Dis. 1999, 83, 839–844.
[53]  Lima, G.; Castoria, R.; DeCurtis, F.; Raiola, A.; Ritieni, A.; DeCicco, V. Integrated control of blue mould using new fungicides and biocontrol yeasts lowers levels of fungicide residues and patulin contamination in apples. Postharvest Biol. Technol. 2011, 60, 164–172.
[54]  Ribereau-Gayon, P.; Dubourdieu, D.; Doneche, B.; Lonvaud, A. Handbook of Enology: The Microbiology of Wine and Vinifications, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006.
[55]  Lima, G.; De Curtis, F.; De Cicco, V. Interaction of microbial biocontrol agents and fungicides in the control of postharvest diseases. Stewart Postharvest Rev. 2008, 1, 1–7.
[56]  Droby, S.; Wisniewski, M.; Macarisin, D.; Wilson, C. Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biol. Technol. 2009, 52, 137–145, doi:10.1016/j.postharvbio.2008.11.009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133