全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Toxins  2012 

Scorpion Toxins Specific for Potassium (K+) Channels: A Historical Overview of Peptide Bioengineering

DOI: 10.3390/toxins4111082

Keywords: scorpion, peptide, toxin, potassium (K+) channel, bioengineering, probe, chimera, cyclotide, molecular therapeutic

Full-Text   Cite this paper   Add to My Lib

Abstract:

Scorpion toxins have been central to the investigation and understanding of the physiological role of potassium (K+) channels and their expansive function in membrane biophysics. As highly specific probes, toxins have revealed a great deal about channel structure and the correlation between mutations, altered regulation and a number of human pathologies. Radio- and fluorescently-labeled toxin isoforms have contributed to localization studies of channel subtypes in expressing cells, and have been further used in competitive displacement assays for the identification of additional novel ligands for use in research and medicine. Chimeric toxins have been designed from multiple peptide scaffolds to probe channel isoform specificity, while advanced epitope chimerization has aided in the development of novel molecular therapeutics. Peptide backbone cyclization has been utilized to enhance therapeutic efficiency by augmenting serum stability and toxin half-life in vivo as a number of K+-channel isoforms have been identified with essential roles in disease states ranging from HIV, T-cell mediated autoimmune disease and hypertension to various cardiac arrhythmias and Malaria. Bioengineered scorpion toxins have been monumental to the evolution of channel science, and are now serving as templates for the development of invaluable experimental molecular therapeutics.

References

[1]  Possani, L.D.; Becerril, B.; Delepierre, M.; Tytgat, J. Scorpion toxins specific for Na+-channels. Eur. J. Biochem. 1999, 264, 287–300, doi:10.1046/j.1432-1327.1999.00625.x.
[2]  Bradding, P.; Wulff, H. The K+ channels KCa3.1 and Kv1.3 as novel targets for asthma therapy. Br. J. Pharmacol. 2009, 157, 1330–1339, doi:10.1111/j.1476-5381.2009.00362.x.
[3]  Jenkinson, D.H. Potassium channels-Multiplicity and challenges. Br. J. Pharmacol. 2006, 147, S63–S71, doi:10.1038/sj.bjp.0706447.
[4]  Wickenden, A. K+ channels as therapeutic drug targets. Pharmacol. Ther. 2002, 94, 157–182, doi:10.1016/S0163-7258(02)00201-2.
[5]  Bingham, J.P.; Bian, S.; Tan, Z.Y.; Takacs, Z.; Moczydlowski, E. Synthesis of a biotin derivative of iberiotoxin: Binding interactions with streptavidin and the bk Ca2+-activated K+ channel expressed in a human cell line. Bioconjug. Chem. 2006, 17, 689–699, doi:10.1021/bc060002u.
[6]  Miller, C.; Moczydlowski, E.; Latorre, R.; Phillips, M. Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature 1985, 313, 316–318.
[7]  Pimentel, C.; M’Barek, S.; Visan, V.; Grissmer, S.; Sampieri, F.; Sabatier, J.M.; Darbon, H.; Fajloun, Z. Chemical synthesis and 1h-nmr 3d structure determination of agtx2-mtx chimera, a new potential blocker for kv1.2 channel, derived from mtx and agtx2 scorpion toxins. Protein Sci. 2008, 17, 107–118.
[8]  Giangiacomo, K.M.; Sugg, E.E.; Garcia-Calvo, M.; Leonard, R.J.; McManus, O.B.; Kaczorowski, G.J.; Garcia, M.L. Synthetic charybdotoxin-iberiotoxin chimeric peptides define toxin binding sites on calcium-activated and voltage-dependent potassium channels. Biochemistry 1993, 32, 2363–2370.
[9]  Veiseh, M.; Gabikian, P.; Bahrami, S.B.; Veiseh, O.; Zhang, M.; Hackman, R.C.; Ravanpay, A.C.; Stroud, M.R.; Kusuma, Y.; Hansen, S.J.; et al. Tumor paint: A chlorotoxin: Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res. 2007, 67, 6882–6888.
[10]  Francke, O.F. Conspectus genericus scorpionum. Occas. Pap. Mus. 1985, 98, 1–32.
[11]  Polis, G.A. The Biology of Scorpions; Stanford University Press: Palo Alto, CA, USA, 1990; pp. 1–679.
[12]  Sissom, W.D. Systematics, Biogeography, and Paleontology. In The Biology of Scorpions; Polis, G.A., Ed.; Stanford University Press: Palo Alto, CA, USA, 1990; pp. 64–160.
[13]  Ismail, M. The scorpion envenoming syndrome. Toxicon 1995, 33, 825–858, doi:10.1016/0041-0101(95)00005-7.
[14]  Hjelle, J.T. Anatomy and Morphology. In The Biology of Scorpions; Polis, G.A., Ed.; Stanford University Press: Palo Alto, CA, USA, 1990; pp. 9–63.
[15]  Webber, M.M.; Graham, M.R.; Jaeger, J.R. Wernerius inyoensis, an elusive new scorpion from the inyo mountains of california (scorpiones, vaejovidae). Zookeys 2012, 177, 1–13, doi:10.3897/zookeys.177.2562.
[16]  Lourenco, W.R. The scorpion families and their geographical distribution. J. Venom. Anim. Toxins 2001, 7, 3–23.
[17]  Sollod, B.L.; Wilson, D.; Zhaxybayeva, O.; Gogarten, J.P.; Drinkwater, R.; King, G.F. Were arachnids the first to use combinatorial peptide libraries? Peptides 2005, 26, 131–139, doi:10.1016/j.peptides.2004.07.016.
[18]  Bucherl, W.; Buckley, E.E. Venomous animals and their venoms. Venom. Invertabrates 1971, 3, 537.
[19]  Miranda, F.; Lissitzky, S. Scorpamins: the Toxic Proteins of Scorpion Venoms. Nature. 1961, 190, 443–444, doi:10.1038/190443b0.
[20]  Rochat, C.; Rochat, H.; Miranda, F.; Lissitzky, S. Purification and some properties of the neurotoxins of androctonus australis hector. Biochemistry 1967, 6, 578–585.
[21]  Simard, J.M.; Watt, D.D. Venoms and toxins. In The Biology of Scorpions; Polis, G.A., Ed.; Stanford University Press: Palo Alto, CA, USA, 1990; pp. 414–444.
[22]  Cole, K.S. Dynamic electrical characteristics of the squid axon membrane. Arch. Sci. Physiol. 1949, 3, 253–258.
[23]  Hodgkin, A.L.; Huxley, K.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500–544.
[24]  Splawski, I.; Shen, J.; Timothy, K.W.; Lehmann, M.H.; Priori, S.; Robinson, J.L.; Moss, A.J.; Schwartz, P.J.; Towbin, J.A.; Vincent, G.M.; Keating, M.T. Spectrum of mutations in long-qt syndrome genes. Kvlqt1, herg, scn5a, kcne1, and kcne2. Circulation 2000, 102, 1178–1185, doi:10.1161/01.CIR.102.10.1178.
[25]  Carbone, E.; Wanke, E.; Prestipino, G.; Possani, L.D.; Maelicke, A. Selective blockage of voltage-dependent K+ channels by a novel scorpion toxin. Nature 1982, 296, 90–91.
[26]  Possani, L.D.; Martin, B.M.; Svendsen, I.B. The primary structure of noxiustoxin: A K+ channel blocking peptide, purified from the venom of the scorpion centruroides noxius hoffmann. Carlsberg Res. Commun. 1982, 47, 285–289, doi:10.1007/BF02907789.
[27]  Sugg, E.E.; Garcia, M.L.; Reuben, J.P.; Patchett, A.A.; Kaczorowski, G.J. Synthesis and structural characterization of charybdotoxin, a potent peptidyl inhibitor of the high conductance Ca2+-activated K+ channel. J. Biol. Chem. 1990, 265, 18745–18748.
[28]  Garcia, M.L.; Galvez, A.; Garcia-Calvo, M.; King, V.F.; Vazquez, J.; Kaczorowski, G.J. Use of toxins to study potassium channels. J. Bioenerg. Biomembr. 1991, 23, 615–646, doi:10.1007/BF00785814.
[29]  Pedroso, E.; Grandas, A.; Amor, J.C.; Giralt, E. Reversed-phase high-performance liquid chromatography of protected peptide segments. J. Chromatogr. 1987, 409, 281–290, doi:10.1016/S0021-9673(01)86804-7.
[30]  Galvez, A.; Gimenez-Gallego, G.; Reuben, J.P.; Roy-Contancin, L.; Feigenbaum, P.; Kaczorowski, G.J.; Garcia, M.L. Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion buthus tamulus. J. Biol. Chem. 1990, 265, 11083–11090.
[31]  MacKinnon, R.; Heginbotham, L.; Abramson, T. Mapping the receptor site for charybdotoxin, a pore-blocking potassium channel inhibitor. Neuron 1990, 5, 767–771, doi:10.1016/0896-6273(90)90335-D.
[32]  Legros, C.; Pollmann, V.; Knaus, H.G.; Farrell, A.M.; Darbon, H.; Bougis, P.E.; Martin-Eauclaire, M.F.; Pongs, O. Generating a high affinity scorpion toxin receptor in kcsa-kv1.3 chimeric potassium channels. J. Biol. Chem. 2000, 275, 16918–16924.
[33]  Gross, A.; MacKinnon, R. Agitoxin footprinting the shaker potassium channel pore. Neuron 1996, 16, 399–406, doi:10.1016/S0896-6273(00)80057-4.
[34]  Mouhat, S.; Andreotti, N.; Jouirou, B.; Sabatier, J.M. Animal toxins acting on voltage-gated potassium channels. Curr. Pharm. Des. 2008, 14, 2503–2518, doi:10.2174/138161208785777441.
[35]  Smith, J.J.; Hill, J.M.; Little, M.J.; Nicholson, G.M.; King, G.F.; Alewood, P.F. Unique scorpion toxin with a putative ancestral fold provides insight into evolution of the inhibitor cystine knot motif. Proc. Natl. Acad. Sci. USA 2011, 108, 10478–10483.
[36]  Kopeyan, C.; Martinez, G.; Lissitzky, S.; Miranda, F.; Rochat, H. Disulfide bonds of toxin ii of the scorpion androctonus australis hector. Eur. J. Biochem. 1974, 47, 483–489, doi:10.1111/j.1432-1033.1974.tb03716.x.
[37]  Fontecilla-Camps, J.C.; Almassy, R.J.; Suddath, F.L.; Watt, D.D.; Bugg, C.E. Three-dimensional structure of a protein from scorpion venom: A new structural class of neurotoxins. Proc. Natl. Acad. Sci. USA 1980, 77, 6496–6500.
[38]  Gimenez-Gallego, G.; Navia, M.A.; Reuben, J.P.; Katz, G.M.; Kaczorowski, G.J.; Garcia, M.L. Purification, sequence, and model structure of charybdotoxin, a potent selective inhibitor of calcium-activated potassium channels. Proc. Natl. Acad. Sci. USA 1988, 85, 3329–3333, doi:10.1073/pnas.85.10.3329.
[39]  Pentelute, B.L.; Mandal, K.; Gates, Z.P.; Sawaya, M.R.; Yeates, T.O.; Kent, S.B. Total chemical synthesis and X-ray structure of kaliotoxin by racemic protein crystallography. Chem. Commun. 2010, 46, 8174–8176.
[40]  Bystrov, V.F. Contribution of nmr spectroscopy to the study of structure-function relations of proteins and peptides. Bioorg. Khim. 1984, 10, 997–1043.
[41]  Bontems, F.; Roumestand, C.; Boyot, P.; Gilquin, B.; Doljansky, Y.; Menez, A.; Toma, F. Three-dimensional structure of natural charybdotoxin in aqueous solution by 1h-nmr. Charybdotoxin possesses a structural motif found in other scorpion toxins. Eur. J. Biochem. 1991, 196, 19–28, doi:10.1111/j.1432-1033.1991.tb15780.x.
[42]  Drakopoulou, E.; Vizzavona, J.; Neyton, J.; Aniort, V.; Bouet, F.; Virelizier, H.; Ménez, A.; Vita, C. Consequence of the removal of evolutionary conserved disulfide bridges on the structure and function of charybdotoxin and evidence that particular cysteine spacings govern specific disulfide bond formation. Biochemistry 1998, 37, 1292–1301.
[43]  Johnson, B.A.; Sugg, E.E. Determination of the three-dimensional structure of iberiotoxin in solution by 1h nuclear magnetic resonance spectroscopy. Biochemistry 1992, 31, 8151–8159, doi:10.1021/bi00150a006.
[44]  Fernández, I.; Romi, R.; Szendeffy, S.; Martin-Eauclaire, M.F.; Rochat, H.; van Rietschoten, J.; Pons, M.; Giralt, E. Kaliotoxin (1-37) shows structural differences with related potassium channel blockers. Biochemistry 1994, 33, 14256–14263.
[45]  Fajloun, Z.; Mosbah, A.; Carlier, E.; Mansuelle, P.; Sandoz, G.; Fathallah, M.; di Luccio, E.; Devaux, C.; Rochat, H.; Darbon, H.; et al. Maurotoxin versus pi1/hstx1 scorpion toxins. Toward new insights in the understanding of their distinct disulfide bridge patterns. J. Biol. Chem. 2000, 275, 39394–39402.
[46]  M’Barek, S.; Lopez-Gonzalez, I.; Andreotti, N.; di Luccio, E.; Visan, V.; Grissmer, S.; Judge, S.; el Ayeb, M.; Darbon, H.; Rochat, H.; et al. A maurotoxin with constrained standard disulfide bridging: Innovative strategy of chemical synthesis, pharmacology, and docking on K+ channels. J. Biol. Chem. 2003, 278, 31095–31104.
[47]  Lenffer, J.; Lai, P.; el Mejaber, W.; Khan, A.M.; Koh, J.L.; Tan, P.T.; Seah, S.H.; Brusic, V. Cysview: Protein classification based on cysteine pairing patterns. Nucleic Acids Res. 2004, 32, W350–W355.
[48]  Lee, C.W.; Bae, C.; Lee, J.; Ryu, J.H.; Kim, H.H.; Kohno, T.; Swartz, K.J.; Kim, J.I. Solution structure of kurtoxin: A gating modifier selective for cav3 voltage-gated Ca2+ channels. Biochemistry 2012, 51, 1862–1873.
[49]  Kumar, G.S.; Upadhyay, S.; Mathew, M.K.; Sarma, S.P. Solution structure of btk-2, a novel hk(v)1.1 inhibiting scorpion toxin, from the eastern indian scorpion mesobuthus tamulus. Biochim. Biophys. Acta 2011, 1814, 459–469, doi:10.1016/j.bbapap.2011.01.006.
[50]  Pardo-Lopez, L.; Zhang, M.; Liu, J.; Jiang, M.; Possani, L.D.; Tseng, G.N. Mapping the binding site of a human ether-a-go-go-related gene-specific peptide toxin (ergtx) to the channel’s outer vestibule. J. Biol. Chem. 2002, 277, 16403–16411.
[51]  Korolkova, Y.V.; Tseng, G.N.; Grishin, E.V. Unique interaction of scorpion toxins with the herg channel. J. Mol. Recognit. 2004, 17, 209–217, doi:10.1002/jmr.667.
[52]  Yu, L.; Sun, C.; Song, D.; Shen, J.; Xu, N.; Gunasekera, A.; Hajduk, P.J.; Olejniczak, E.T. Nuclear magnetic resonance structural studies of a potassium channel-charybdotoxin complex. Biochemistry 2005, 44, 15834–15841, doi:10.1021/bi051656d.
[53]  Andersson, C.O. Mass spectrometric studies on amino acid and peptide derivatives. Acta Chem. Scand. 1958, 12, 1353.
[54]  Biemann, K. Mass spectrometry. Annu. Rev. Biochem. 1963, 32, 755–780, doi:10.1146/annurev.bi.32.070163.003543.
[55]  Barber, M.; Jolles, P.; Vilkas, E.; Lederer, E. Determination of amino acid sequences in oligopeptides by mass spectrometry I. The structure of fortuitine, an acylnonapeptide methyl ester. Biochem. Biophys. Res. Commun. 1965, 18, 469–473, doi:10.1016/0006-291X(65)90775-8.
[56]  Vázquez, A.; Becerril, B.; Martin, B.M.; Zamudio, F.; Bolívar, F.; Possani, L.D. Primary structure determination and cloning of the cdna encoding toxin 4 of the scorpion centruroides noxius hoffmann. FEBS Lett. 1993, 320, 43–46, doi:10.1016/0014-5793(93)81654-I.
[57]  Tayo, L.L.; Lu, B.; Cruz, L.J.; Yates, J.R. Proteomic analysis provides insights on venom processing in conus textile. J. Proteome Res. 2010, 9, 2292–2301, doi:10.1021/pr901032r.
[58]  Tamaoki, H.; Miura, R.; Kusunoki, M.; Kyogoku, Y.; Kobayashi, Y.; Moroder, L. Folding motifs induced and stabilized by distinct cystine frameworks. Protein Eng. 1998, 11, 649–659, doi:10.1093/protein/11.8.649.
[59]  Hallgren, K.W.; Zhang, D.; Kinter, M.; Willard, B.; Berkner, K.L. Methylation of gamma-carboxylated glu (gla) allows detection by liquid chromatography-mass spectrometry and the identification of gla residues in the gamma-glutamyl carboxylase. J. Proteome Res. 2012, doi:10.1021/pr3003722.
[60]  Ramstr?m, M.; Sandberg, H. Characterization of γ-carboxylated tryptic peptides by collision-induced dissociation and electron transfer dissociation mass spectrometry. Eur. J. Mass Spectrom. 2011, 17, 497–506, doi:10.1255/ejms.1149.
[61]  Zhu, Q.; Liang, S.; Martin, L.; Gasparini, S.; Ménez, A.; Vita, C. Role of disulfide bonds in folding and activity of leiurotoxin i: Just two disulfides suffice. Biochemistry 2002, 41, 11488–11494, doi:10.1021/bi026136m.
[62]  Fajloun, Z.; Ferrat, G.; Carlier, E.; Fathallah, M.; Lecomte, C.; Sandoz, G.; di Luccio, E.; Mabrouk, K.; Legros, C.; Darbon, H.; et al. Synthesis, 1h nmr structure, and activity of a three-disulfide-bridged maurotoxin analog designed to restore the consensus motif of scorpion toxins. J. Biol. Chem. 2000, 275, 13605–13612.
[63]  Gairí, M.; Romi, R.; Fernández, I.; Rochat, H.; Martin-Eauclaire, M.F.; van Rietschoten, J.; Pons, M.; Giralt, E. 3D structure of kaliotoxin: Is residue 34 a key for channel selectivity? J. Pept. Sci. 1997, 3, 314–319, doi:10.1002/(SICI)1099-1387(199707)3:4<314::AID-PSC117>3.0.CO;2-E.
[64]  Harvey, A.L.; Vatanpour, H.; Rowan, E.G.; Pinkasfeld, S.; Vita, C.; Ménez, A.; Martin-Eauclaire, M.F. Structure-activity studies on scorpion toxins that block potassium channels. Toxicon 1995, 33, 425–436, doi:10.1016/0041-0101(94)00181-7.
[65]  Gurrola, G.B.; Molinar-Rode, R.; Sitges, M.; Bayon, A.; Possani, L.D. Synthetic peptides corresponding to the sequence of noxiustoxin indicate that the active site of this K+ channel blocker is located on its amino-terminal portion. J. Neural. Transm. 1989, 77, 11–20.
[66]  Lecomte, C.; Ferrat, G.; Fajloun, Z.; van Rietschoten, J.; Rochat, H.; Martin-Eauclaire, M.F.; Darbon, H.; Sabatier, J.M. Chemical synthesis and structure-activity relationships of ts kappa, a novel scorpion toxin acting on apamin-sensitive sk channel. J. Pept. Res. 1999, 54, 369–376, doi:10.1034/j.1399-3011.1999.00107.x.
[67]  Ferrat, G.; Bernard, C.; Fremont, V.; Mullmann, T.J.; Giangiacomo, K.M.; Darbon, H. Structural basis for alpha-K toxin specificity for K+ channels revealed through the solution 1h nmr structures of two noxiustoxin-iberiotoxin chimeras. Biochemistry 2001, 40, 10998–11006.
[68]  Robitaille, R.; Garcia, M.L.; Kaczorowski, G.J.; Charlton, M.P. Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron 1993, 11, 635–655.
[69]  Pragl, B.; Koschak, A.; Trieb, M.; Obermair, G.; Kaufmann, W.A.; Gerster, U.; Blanc, E.; Hahn, C.; Prinz, H.; Schütz, G.; et al. Synthesis, characterization, and application of cy-dye- and alexa-dye-labeled hongotoxin(1) analogues. The first high affinity fluorescence probes for voltage-gated K+ channels. Bioconjug. Chem. 2002, 13, 416–425, doi:10.1021/bc015543s.
[70]  Hafidi, A.; Beurg, M.; Dulon, D. Localization and developmental expression of bk channels in mammalian cochlear hair cells. Neuroscience 2005, 130, 475–484, doi:10.1016/j.neuroscience.2004.09.038.
[71]  Wang, C.G.; Cai, Z.; Lu, W.; Wu, J.; Xu, Y.; Shi, Y.; Chi, C.W. A novel short-chain peptide bmkx from the chinese scorpion buthus martensi karsch, sequencing, gene cloning and structure determination. Toxicon 2005, 45, 309–319, doi:10.1016/j.toxicon.2004.11.014.
[72]  Takacs, Z.; Toups, M.; Kollewe, A.; Johnson, E.; Cuello, L.G.; Driessens, G.; Biancalana, M.; Koide, A.; Ponte, C.G.; Perozo, E.; et al. A designer ligand specific for kv1.3 channels from a scorpion neurotoxin-based library. Proc. Natl. Acad. Sci. USA 2009, 106, 22211–22216.
[73]  Gao, B.; Peigneur, S.; Tytgat, J.; Zhu, S. A potent potassium channel blocker from mesobuthus eupeus scorpion venom. Biochimie 2010, 92, 1847–1853.
[74]  Di Luccio, E.; Azulay, D.O.; Regaya, I.; Fajloun, Z.; Sandoz, G.; Mansuelle, P.; Kharrat, R.; Fathallah, M.; Carrega, L.; Estève, E.; et al. Parameters affecting in vitro oxidation/folding of maurotoxin, a four-disulphide-bridged scorpion toxin. Biochem. J. 2001, 358, 681–692, doi:10.1042/0264-6021:3580681.
[75]  Lecomte, C.; Sabatier, J.M.; van Rietschoten, J.; Rochat, H. Synthetic peptides as tools to investigate the structure and pharmacology of potassium channel-acting short-chain scorpion toxins. Biochimie 1998, 80, 151–154, doi:10.1016/S0300-9084(98)80021-7.
[76]  Merrifield, B.; Shaheen, J.C.; Hess, G.P. Concept and early development of solid-phase peptide synthesis. J. Am. Chem. Soc. 1955, 77, 1067, doi:10.1021/ja01609a099.
[77]  Clark, R.J.; Craik, D.J. Native chemical ligation applied to the synthesis and bioengineering of circular peptides and proteins. Pept. Sci. 2009, 94, 414–422.
[78]  Lambert, P.; Kuroda, H.; Chino, N.; Watanabe, T.X.; Kimura, T.; Sakakibara, S. Solution synthesis of charybdotoxin (chtx), a K+ channel blocker. Biochem. Biophys. Res. Commun. 1990, 170, 684–690, doi:10.1016/0006-291X(90)92145-P.
[79]  Sarin, V.K.; Kent, S.B.; Tam, J.P.; Merrifield, R.B. Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal. Biochem. 1981, 117, 147–157.
[80]  Kharrat, R.; Mabrouk, K.; Crest, M.; Darbon, H.; Oughideni, R.; Martin-Eauclaire, M.F.; Jacquet, G.; el Ayeb, M.; van Rietschoten, J.; Rochat, H.; Sabatier, J.M. Chemical synthesis and characterization of maurotoxin, a short scorpion toxin with four disulfide bridges that acts on K+ channels. Eur. J. Biochem. 1996, 242, 491–498.
[81]  Park, C.S.; Hausdorff, S.F.; Miller, C. Design, synthesis, and functional expression of a gene for charybdotoxin, a peptide blocker of K+ channels. Proc. Natl. Acad. Sci. USA 1991, 88, 2046–2050, doi:10.1073/pnas.88.6.2046.
[82]  Sahdev, S.; Khattar, S.K.; Saini, K.S. Production of active eukaryotic proteins through bacterial expression systems: A review of the existing biotechnology strategies. Mol. Cell Biochem. 2008, 307, 249–264.
[83]  Trundova, M.; Celer, V. Expression of porcine circovirus 2 orf2 gene requires codon optimized E.coli cells. Virus Genes 2007, 34, 199–204, doi:10.1007/s11262-006-0043-2.
[84]  Winter, J.; Klappa, P.; Freedman, R.B.; Lilie, H.; Rudolph, R. Catalytic activity and chaperone function of human protein-disulfide isomerase are required for the efficient refolding of proinsulin. J. Biol. Chem. 2002, 277, 310–317.
[85]  Chun, J.B.; Baker, M.R.; Kim, D.H.; Leroy, M.; Toribo, P.; Bingham, J.P. Cone snail milked venom dynamics-A quantitative study of conus purpurascens. Toxicon 2012, 60, 83–94, doi:10.1016/j.toxicon.2012.03.019.
[86]  Craig, A.G.; Bandyopadhyay, P.; Olivera, B.M. Post-translationally modified neuropeptides from conus venoms. Eur. J. Biochem. 1999, 264, 271–275, doi:10.1046/j.1432-1327.1999.00624.x.
[87]  Wang, L.; Xie, J.; Schultz, P.G. Expanding the genetic code. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 225–249, doi:10.1146/annurev.biophys.35.101105.121507.
[88]  Xie, J.; Schultz, P.G. A chemical toolkit for proteins-An expanded genetic code. Nat. Rev. Mol. Cell Biol. 2006, 7, 775–782, doi:10.1038/nrm2005.
[89]  Xie, J.; Schultz, P.G. Adding amino acids to the genetic repertoire. Curr. Opin. Chem. Biol. 2005, 9, 548–554, doi:10.1016/j.cbpa.2005.10.011.
[90]  Kent, S. Novel forms of chemical protein diversity-In nature and in the laboratory. Curr. Opin. Biotechnol. 2004, 15, 607–614, doi:10.1016/j.copbio.2004.10.003.
[91]  Wang, L.; Schultz, P.G. Expanding the genetic code. Angew. Chem. Int. Ed. 2004, 44, 34–66.
[92]  Alfonta, L.; Zhang, Z.; Uryu, S.; Loo, J.A.; Schultz, P.G. Site-specific incorporation of a redox-active amino acid into proteins. J. Am. Chem. Soc. 2003, 125, 14662–14663.
[93]  Hooker, J.M.; Kovacs, E.W.; Francis, M.B. Interior surface modification of bacteriophage ms2. J. Am. Chem. Soc. 2004, 126, 3718–3719.
[94]  Datta, D.; Wang, P.; Carrico, I.S.; Mayo, S.L.; Tirrell, D.A. A designed phenylalanyl-trna synthetase variant allows efficient in vivo incorporation of aryl ketone functionality into proteins. J. Am. Chem. Soc. 2002, 124, 5652–5653.
[95]  Kiick, K.L.; Saxon, E.; Tirrell, D.A.; Bertozzi, C.R. Incorporation of azides into recombinant proteins for chemoselective modification by the staudinger ligation. Proc. Natl. Acad. Sci. USA 2002, 99, 19–24.
[96]  Arbely, E.; Torres-Kolbus, J.; Deiters, A.; Chin, J.W. Photocontrol of tyrosine phosphorylation in mammalian cells via genetic encoding of photocaged tyrosine. J. Am. Chem. Soc. 2012, 134, 11912–11915, doi:10.1021/ja3046958.
[97]  Mendel, D.; Ellman, J.; Schultz, P.G. Construction of a light-activated protein by site directed unnatural amino acid mutagenesis. J. Am. Chem. Soc. 1991, 113, 2758–2760.
[98]  Chin, J.W.; Cropp, T.A.; Anderson, J.C.; Mukherji, M.; Zhang, Z.; Schultz, P.G. An expanded eukaryotic genetic code. Science 2003, 301, 964–967.
[99]  Wang, J.; Xie, J.; Schultz, P.G. A genetically encoded fluorescent amino acid. J. Am. Chem. Soc. 2006, 128, 8738–8739, doi:10.1021/ja062666k.
[100]  Charbon, G.; Brustad, E.; Scott, K.A.; Wang, J.; L?bner-Olesen, A.; Schultz, P.G.; Jacobs-Wagner, C.; Chapman, E. Subcellular protein localization by using a genetically encoded fluorescent amino acid. Chembiochem 2011, 12, 1818–1821.
[101]  Zhang, Z.; Smith, B.A.; Wang, L.; Brock, A.; Cho, C.; Schultz, P.G. A new strategy for the site-specific modification of proteins in vivo. Biochemistry 2003, 42, 6735–6746.
[102]  Zhang, Z.; Alfonta, L.; Tian, F.; Bursulaya, B.; Uryu, S.; King, D.S.; Schultz, P.G. Selective incorporation of 5-hydroxytryptophan into proteins in mammalian cells. Proc. Natl. Acad. Sci. USA 2004, 101, 8882–8887.
[103]  Pimenta, A.M.; Legros, C.; Almeida Fde, M.; Mansuelle, P.; de Lima, M.E.; Bougis, P.E.; Martin-Eauclaire, M.F. Novel structural class of four disulfide-bridged peptides from tityus serrulatus venom. Biochem. Biophys. Res. Commun. 2003, 301, 1086–1092, doi:10.1016/S0006-291X(03)00082-2.
[104]  Park, C.S.; Miller, C. Mapping function to structure in a channel-blocking peptide: Electrostatic mutants of charybdotoxin. Biochemistry 1992, 31, 7749–7755, doi:10.1021/bi00149a002.
[105]  Lopatin, A.N.; Nichols, C.G. Ion Channel Localization; Methods and Protocols; Humana Press: Totowa, NJ, USA, 2011.
[106]  Garcia, M.L.; Hanner, M.; Knaus, H.G.; Koch, R.; Schmalhofer, W.; Slaughter, R.S.; Kaczorowski, G.J. Pharmacology of potassium channels. Adv. Pharmacol. 1997, 39, 425–471, doi:10.1016/S1054-3589(08)60078-2.
[107]  Martínez, F.; Mu?oz-Garay, C.; Gurrola, G.; Darszon, A.; Possani, L.D.; Becerril, B. Site directed mutants of noxiustoxin reveal specific interactions with potassium channels. FEBS Lett. 1998, 429, 381–384, doi:10.1016/S0014-5793(98)00636-X.
[108]  Yu, K.; Fu, W.; Liu, H.; Luo, X.; Chen, K.X.; Ding, J.; Shen, J.; Jiang, H. Computational simulations of interactions of scorpion toxins with the voltage-gated potassium ion channel. Biophys. J. 2004, 86, 3542–3555, doi:10.1529/biophysj.103.039461.
[109]  Stehling, E.G.; Sfor?a, M.L.; Zanchin, N.I.; Oyama, S., Jr.; Pignatelli, A.; Belluzzi, O.; Polverini, E.; Corsini, R.; Spisni, A.; Pertinhez, T.A. Looking over toxin-K+ channel interactions. Clues from the structural and functional characterization of α-ktx toxin tc32, a kv1.3 channel blocker. Biochemistry 2012, 51, 1885–1894.
[110]  Bingham, J.P.; Andrews, A.E.; Kiyabu, S.M.; Cabalteja, C.C. Drugs from slugs, part II-Conopeptide bioengineering. Chem. Biol. Interact. 2012, doi:10.1016/j.cbi.2012.09.021.
[111]  Torres, A.M.; Bansal, P.; Alewood, P.F.; Bursill, J.A.; Kuchel, P.W.; Vandenberg, J.I. Solution structure of cnerg1 (ergtoxin), a herg specific scorpion toxin. FEBS Lett. 2003, 539, 138–142, doi:10.1016/S0014-5793(03)00216-3.
[112]  Coronas, F.V.; de Roodt, A.R.; Portugal, T.O.; Zamudio, F.Z.; Batista, C.V.; Gómez-Lagunas, F.; Possani, L.D. Disulfide bridges and blockage of shaker b K+-channels by another butantoxin peptide purified from the argentinean scorpion tityus trivittatus. Toxicon 2003, 41, 173–179, doi:10.1016/S0041-0101(02)00247-7.
[113]  Vázquez, J.; Feigenbaum, P.; Katz, G.; King, V.F.; Reuben, J.P.; Roy-Contancin, L.; Slaughter, R.S.; Kaczorowski, G.J.; Garcia, M.L. Characterization of high affinity binding sites for charybdotoxin in sarcolemmal membranes from bovine aortic smooth muscle. Evidence for a direct association with the high conductance calcium-activated potassium channel. J. Biol. Chem. 1989, 264, 20902–20909.
[114]  Salacinski, P.; Hope, J.; McLean, C.; Clement-Jones, V.; Sykes, J.; Price, J.; Lowry, P.J. A new simple method which allows theoretical incorporation of radio-iodine into proteins and peptides without damage. J. Endocrinol. 1979, 81, 131, doi:10.1677/joe.0.0810131.
[115]  Auguste, P.; Hugues, M.; Mourre, C.; Moinier, D.; Tartar, A.; Lazdunski, M. Scyllatoxin, a blocker of Ca2+-activated K+ channels: Structure-function relationships and brain localization of the binding sites. Biochemistry 1991, 31, 648–654.
[116]  Knaus, H.G.; Schwarzer, C.; Koch, R.O.; Eberhart, A.; Kaczorowski, G.J.; Glossmann, H.; Wunder, F.; Pongs, O.; Garcia, M.L.; Sperk, G. Distribution of high-conductance Ca2+-activated K+ channels in rat brain: Targeting to axons and nerve terminals. J. Neurosci. 1996, 16, 955–963.
[117]  Koschak, A.; Koch, R.O.; Liu, J.; Kaczorowski, G.J.; Reinhart, P.H.; Garcia, M.L.; Knaus, H.G. [125I]Iberiotoxin-d19y/y36f, the first selective, high specific activity radioligand for high-conductance calcium-activated potassium channels. Biochemistry 1997, 36, 1943–1952, doi:10.1021/bi962074m.
[118]  Shimony, E.; Sun, T.; Kolmakova-Partensky, L.; Miller, C. Engineering a uniquely reactive thiol into a cysteine-rich peptide. Protein Eng. 1994, 7, 503–507, doi:10.1093/protein/7.4.503.
[119]  Auguste, P.; Hugues, M.; Gravé, B.; Gesquière, J.C.; Maes, P.; Tartar, A.; Romey, G.; Schweitz, H.; Lazdunski, M. Leiurotoxin i (scyllatoxin), a peptide ligand for Ca2+-activated K+ channels. Chemical synthesis, radiolabeling, and receptor characterization. J. Biol. Chem. 1990, 265, 4753–4759.
[120]  Knaus, H.G.; Koch, R.O.; Eberhart, A.; Kaczorowski, G.J.; Garcia, M.L.; Slaughter, R.S. [125I]Margatoxin, an extraordinarily high affinity ligand for voltage-gated potassium channels in mammalian brain. Biochemistry 1995, 34, 13627–13634.
[121]  Kozlowski, E.S.; Johnson, G.; Dischino, D.D.; Dworetzky, S.I.; Boissard, C.G.; Gribkoff, V.K. Synthesis and biological evaluation of an iodinated iberiotoxin analogue, [mono-iodo-tyr5, phe36]-iberiotoxin. Int. J. Pept. Protein Res. 1996, 48, 194–199.
[122]  Angelo, K.; Korolkova, Y.V.; Grunnet, M.; Grishin, E.V.; Pluzhnikov, K.A.; Klaerke, D.A.; Knaus, H.G.; M?ller, M.; Olesen, S.P. A radiolabeled peptide ligand of the herg channel, [125I]-bekm-1. Pflugers Arch. 2003, 447, 55–63, doi:10.1007/s00424-003-1125-9.
[123]  Grunnet, M.; Rasmussen, H.B.; Hay-Schmidt, A.; Klaerke, D.A. The voltage-gated potassium channel subunit, kv1.3, is expressed in epithelia. Biochim. Biophys. Acta 2003, 1616, 85–94, doi:10.1016/S0005-2736(03)00198-6.
[124]  Vacher, H.; Romi-Lebrun, R.; Mourre, C.; Lebrun, B.; Kourrich, S.; Masméjean, F.; Nakajima, T.; Legros, C.; Crest, M.; Bougis, P.E.; Martin-Eauclaire, M.F. A new class of scorpion toxin binding sites related to an a-type K+ channel: Pharmacological characterization and localization in rat brain. FEBS Lett. 2001, 501, 31–36, doi:10.1016/S0014-5793(01)02620-5.
[125]  Valdivia, H.H.; Martin, B.M.; Escobar, L.; Possani, L.D. Noxiustoxin and leiurutoxin iii, two homologous peptide toxins with binding properties to synaptosomal membrane K+ channels. Biochem. Int. 1992, 27, 953–962.
[126]  Romi, R.; Crest, M.; Gola, M.; Sampieri, F.; Jacquet, G.; Zerrouk, H.; Mansuelle, P.; Sorokine, O.; van Dorsselaer, A.; Rochat, H.; et al. Synthesis and characterization of kaliotoxin. Is the 26-32 sequence essential for potassium channel recognition? J. Biol. Chem. 1993, 268, 26302–26309.
[127]  Kantchev, E.A.; Chang, C.C.; Cheng, S.F.; Roche, A.C.; Chang, D.K. Direct solid-phase synthesis and fluorescence labeling of large, monodisperse mannosylated dendrons in a peptide synthesizer. Org. Biomol. Chem. 2008, 6, 1377–1385, doi:10.1039/b719737c.
[128]  Johnson, D.A.; Yguerabide, J. Solute accessibility to N epsilon-fluorescein isothiocyanate-lysine-23 cobra alpha-toxin bound to the acetylcholine receptor. A consideration of the effect of rotational diffusion and orientation constraints on fluorescence quenching. Biophys. J. 1985, 48, 949–955, doi:10.1016/S0006-3495(85)83858-3.
[129]  Akcan, M.; Stroud, M.R.; Hansen, S.J.; Clark, R.J.; Daly, N.L.; Craik, D.J.; Olson, J.M. Chemical re-engineering of chlorotoxin improves bioconjugation properties for tumor imaging and targeted therapy. J. Med. Chem. 2011, 54, 782–787, doi:10.1021/jm101018r.
[130]  Shi, Y.; Xiang, R.; Horváth, C.; Wilkins, J.A. Design and synthesis of a solid-phase fluorescent mass tag. J. Sep. Sci. 2005, 28, 1812–1817, doi:10.1002/jssc.200500115.
[131]  Meldal, M.; Torn?e, C.W.; Nielsen, T.E.; Diness, F.; le Quement, S.T.; Christensen, C.A.; Jensen, J.F.; Worm-Leonhard, K.; Groth, T.; Bouakaz, L.; et al. Hirschmann award address 2009: Merger of organic chemistry with peptide diversity. Biopolymers 2010, 94, 161–182, doi:10.1002/bip.21344.
[132]  Kamaruddin, M.A.; Ung, P.; Hossain, M.I.; Jarasrassamee, B.; O’Malley, W.; Thompson, P.; Scanlon, D.; Cheng, H.C.; Graham, B. A facile, click chemistry-based approach to assembling fluorescent chemosensors for protein tyrosine kinases. Bioorg. Med. Chem. Lett. 2011, 21, 329–331.
[133]  Beal, D.M.; Albrow, V.E.; Burslem, G.; Hitchen, L.; Fernandes, C.; Lapthorn, C.; Roberts, L.R.; Selby, M.D.; Jones, L.H. Click-enabled heterotrifunctional template for sequential bioconjugations. Org. Biomol. Chem. 2012, 10, 548–554.
[134]  Robitaille, R.; Adler, E.M.; Charlton, M.P. Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses. Neuron 1990, 5, 773–779, doi:10.1016/0896-6273(90)90336-E.
[135]  Jones, O.T.; Kunze, D.L.; Angelides, K.J. Localization and mobility of omega-conotoxin-sensitive Ca2+ channels in hippocampal ca1 neurons. Science 1989, 244, 1189–1193.
[136]  Freudenthaler, G.; Axmann, M.; Schindler, H.; Pragl, B.; Knaus, H.G.; Schütz, G.J. Ultrasensitive pharmacological characterisation of the voltage-gated potassium channel K(v)1.3 studied by single-molecule fluorescence microscopy. Histochem. Cell Biol. 2002, 117, 97–102.
[137]  Bergeron, Z.L. The Molecular Engineering of Potassium Channel Probes: A Stepwise Approach to Cellular Imaging of BK and HERG Ion Channels; Clarkson University: Potsdam, NY, USA, 2007.
[138]  Bergeron, Z.L. Peptide Toxin Bioengineering-Advancement of Fluorescent Probe Design for Targeting Human K+ Channels. Ph.D. Thesis, University of Hawaii at Manoa, 2012.
[139]  Vita, C.; Roumestand, C.; Toma, F.; Ménez, A. Scorpion toxins as natural scaffolds for protein engineering. Proc. Natl. Acad. Sci. USA 1995, 92, 6404–6408, doi:10.1073/pnas.92.14.6404.
[140]  Tassonyi, E.; Charpantier, E.; Muller, D.; Dumont, L.; Bertrand, D. The role of nicotinic acetylcholine receptors in the mechanisms of anesthesia. Brain Res. Bull. 2002, 57, 133–150, doi:10.1016/S0361-9230(01)00740-7.
[141]  Drakopoulou, E.; Zinn-Justin, S.; Guenneugues, M.; Gilqin, B.; Ménez, A.; Vita, C. Changing the structural context of a functional beta-hairpin. Synthesis and characterization of a chimera containing the curaremimetic loop of a snake toxin in the scorpion alpha/beta scaffold. J. Biol. Chem. 1996, 271, 11979–11987.
[142]  Fajloun, Z.; Ferrat, G.; Carlier, E.; M’Barek, S.; Regaya, I.; Fathallah, M.; Rochat, H.; Darbon, H.; de Waard, M.; Sabatier, J.M. Synthesis, 3-D structure, and pharmacology of a reticulated chimeric peptide derived from maurotoxin and tsk scorpion toxins. Biochem. Biophys. Res. Commun. 2002, 291, 640–648, doi:10.1006/bbrc.2002.6496.
[143]  Blanc, E.; Lecomte, C.; Rietschoten, J.V.; Sabatier, J.M.; Darbon, H. Solution structure of tskapa, a charybdotoxin-like scorpion toxin from tityus serrulatus with high affinity for apamin-sensitive Ca2+-activated K+ channels. Proteins 1997, 29, 359–369, doi:10.1002/(SICI)1097-0134(199711)29:3<359::AID-PROT9>3.0.CO;2-5.
[144]  Soroceanu, L.; Gillespie, Y.; Khazaeli, M.B.; Sontheimer, H. Use of chlorotoxin for targeting of primary brain tumors. Cancer Res. 1998, 58, 4871–4879.
[145]  Huys, I.; Waelkens, E.; Tytgat, J. Structure-function study of a chlorotoxin-chimer and its activity on kv1.3 channels. J. Chromatogr. B 2004, 803, 67–73, doi:10.1016/j.jchromb.2003.11.029.
[146]  Holaday, S.K.J.; Martin, B.M.; Fletcher, P.L., Jr.; Krishna, N.R. Nmr solution structure of butantoxin. Arch. Biochem. Biophys. 2000, 379, 18–27, doi:10.1006/abbi.2000.1858.
[147]  Miranda, L.P.; Alewood, P.F. Accelerated chemical synthesis of peptides and small proteins. Proc. Natl. Acad. Sci. USA 1999, 96, 1181–1186.
[148]  Valiyaveetil, F.I.; MacKinnon, R.; Muir, T.W. Semisynthesis and folding of the potassium channel kcsa. J. Am. Chem. Soc. 2002, 124, 9113–9120, doi:10.1021/ja0266722.
[149]  Komarov, A.G.; Linn, K.M.; Devereaux, J.J.; Valiyaveetil, F.I. A modular strategy for the semisynthesis of a K+ channel: Investigating interactions of the pore helix. ACS Chem. Biol. 2009, 4, 1029–1038, doi:10.1021/cb900210r.
[150]  Yu, H.H.; Nakase, I.; Pujals, S.; Hirose, H.; Tanaka, G.; Katayama, S.; Imanishi, M.; Futaki, S. Expressed protein ligation for the preparation of fusion proteins with cell penetrating peptides for endotoxin removal and intracellular delivery. Biochim. Biophys. Acta 2010, 1798, 2249–2257, doi:10.1016/j.bbamem.2010.02.003.
[151]  Clippingdale, A.B.; Barrow, C.J.; Wade, J.D. Peptide thioester preparation by fmoc solid phase peptide synthesis for use in native chemical ligation. J. Pept. Sci. 2000, 6, 225–234, doi:10.1002/(SICI)1099-1387(200005)6:5<225::AID-PSC244>3.0.CO;2-T.
[152]  Li, X.; Kawakami, T.; Aimoto, S. Direct preparation of peptide thioesters using an fmoc solid-phase method. Tetrahedron Lett. 1998, 39, 8669–8672, doi:10.1016/S0040-4039(98)01868-1.
[153]  Bingham, J.P.; Chun, J.B.; Ruzicka, M.R.; Li, Q.X.; Tan, Z.Y.; Kaulin, Y.A.; Englebretsen, D.R.; Moczydlowski, E.G. Synthesis of an iberiotoxin derivative by chemical ligation: A method for improved yields of cysteine-rich scorpion toxin peptides. Peptides 2009, 30, 1049–1057, doi:10.1016/j.peptides.2009.03.008.
[154]  Clark, R.J.; Craik, D.J. Native chemical ligation applied to the synthesis and bioengineering of circular peptides and proteins. Biopolymers 2010, 94, 414–422, doi:10.1002/bip.21372.
[155]  Craik, D.J.; Clark, R.J.; Daly, N.L. Potential therapeutic applications of the cyclotides and related cystine knot mini-proteins. Expert Opin. Investig. Drugs 2007, 16, 595–604, doi:10.1517/13543784.16.5.595.
[156]  Cemazar, M.; Kwon, S.; Mahatmanto, T.; Ravipati, A.S.; Craik, D.J. Discovery and applications of disulfide-rich cyclic peptides. Curr. Top Med. Chem. 2012, 12, 1534–1545, doi:10.2174/156802612802652484.
[157]  Ireland, D.C.; Colgrave, M.L.; Nguyencong, P.; Daly, N.L.; Craik, D.J. Discovery and characterization of a linear cyclotide from viola odorata: Implications for the processing of circular proteins. J. Mol. Biol. 2006, 357, 1522–1535, doi:10.1016/j.jmb.2006.01.051.
[158]  Clark, R.J.; Akcan, M.; Kaas, Q.; Daly, N.L.; Craik, D.J. Cyclization of conotoxins to improve their biopharmaceutical properties. Toxicon 2012, 59, 446–455, doi:10.1016/j.toxicon.2010.12.003.
[159]  Craik, D.J.; Swedberg, J.E.; Mylne, J.S.; Cemazar, M. Cyclotides as a basis for drug design. Expert Opin. Drug Discov. 2012, 7, 179–194, doi:10.1517/17460441.2012.661554.
[160]  Clark, R.J.; Daly, N.L.; Craik, D.J. Structural plasticity of the cyclic-cystine-knot framework: Implications for biological activity and drug design. Biochem. J. 2006, 394, 85–93, doi:10.1042/BJ20051691.
[161]  Carstens, B.B.; Clark, R.J.; Daly, N.L.; Harvey, P.J.; Kaas, Q.; Craik, D.J. Engineering of conotoxins for the treatment of pain. Curr. Pharm. Des. 2011, 17, 4242–4253, doi:10.2174/138161211798999401.
[162]  Daly, N.L.; Clark, R.J.; Craik, D.J. Disulfide folding pathways of cystine knot proteins. Tying the knot within the circular backbone of the cyclotides. J. Biol. Chem. 2003, 278, 6314–6322.
[163]  Craik, D.J.; Cemazar, M.; Daly, N.L. The cyclotides and related macrocyclic peptides as scaffolds in drug design. Curr. Opin. Drug Discov. Devel. 2006, 9, 251–260.
[164]  Dawson, P.E.; Muir, T.W.; Clark-Lewis, I.; Kent, S.B. Synthesis of proteins by native chemical ligation. Science 1994, 266, 776–779.
[165]  Sharpe, I.A.; Palant, E.; Schroeder, C.I.; Kaye, D.M.; Adams, D.J.; Alewood, P.F.; Lewis, R.J. Inhibition of the norepinephrine transporter by the venom peptide chi-mria. Site of action, Na+ dependence, and structure-activity relationship. J. Biol. Chem. 2003, 278, 40317–40323.
[166]  Lovelace, E.S.; Armishaw, C.J.; Colgrave, M.L.; Wahlstrom, M.E.; Alewood, P.F.; Daly, N.L.; Craik, D.J. Cyclic mria: A stable and potent cyclic conotoxin with a novel topological fold that targets the norepinephrine transporter. J. Med. Chem. 2006, 49, 6561–6568.
[167]  Wulff, H.; Castle, N.A.; Pardo, L.A. Voltage-gated potassium channels as therapeutic targets. Nat. Rev. Drug Discov. 2009, 8, 982–1001.
[168]  Villalonga, N.; David, M.; Bielanska, J.; Vicente, R.; Comes, N.; Valenzuela, C.; Felipe, A. Immunomodulation of voltage-dependent K+ channels in macrophages: Molecular and biophysical consequences. J. Gen. Physiol. 2010, 135, 135–147, doi:10.1085/jgp.200910334.
[169]  Yuan, P.; Leonetti, M.D.; Hsiung, Y.; MacKinnon, R. Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel. Nature 2011, 481, 94–97.
[170]  Ataga, K.I.; Stocker, J. Senicapoc (ica-17043): A potential therapy for the prevention and treatment of hemolysis-associated complications in sickle cell anemia. Expert Opin. Investig. Drugs 2009, 18, 231–239, doi:10.1517/13543780802708011.
[171]  Wettwer, E.; Hála, O.; Christ, T.; Heubach, J.F.; Dobrev, D.; Knaut, M.; Varró, A.; Ravens, U. Role of ikur in controlling action potential shape and contractility in the human atrium: Influence of chronic atrial fibrillation. Circulation 2004, 110, 2299–2306.
[172]  Peroz, D.; Rodriguez, N.; Choveau, F.; Baró, I.; Mérot, J.; Loussouarn, G. Kv7.1 (kcnq1) properties and channelopathies. J. Physiol. 2008, 586, 1785–1789, doi:10.1113/jphysiol.2007.148254.
[173]  Sanguinetti, M.C.; Tristani-Firouzi, M. Herg potassium channels and cardiac arrhythmia. Nature 2006, 440, 463–469.
[174]  Center for Disease Control and Prevention. State-specific mortality from sudden cardiac death-United States, 1999. MMWR Morb. Mortal. Wkly. Rep. 2002, 51, 123–126.
[175]  Roy, M.; Dumaine, R.; Brown, A.M. Herg, a primary human ventricular target of the nonsedating antihistamine terfenadine. Circulation 1996, 94, 817–823, doi:10.1161/01.CIR.94.4.817.
[176]  Friedrichs, G.S.; Patmore, L.; Bass, A. Non-clinical evaluation of ventricular repolarization (ich s7b): Results of an interim survey of international pharmaceutical companies. J. Pharmacol. Toxicol Methods 2005, 52, 6–11, doi:10.1016/j.vascn.2005.05.001.
[177]  Korolkova, Y.V.; Kozlov, S.A.; Lipkin, A.V.; Pluzhnikov, K.A.; Hadley, J.K.; Filippov, A.K.; Brown, D.A.; Angelo, K.; Str?baek, D.; Jespersen, T.; et al. An erg channel inhibitor from the scorpion buthus eupeus. J. Biol. Chem. 2001, 276, 9868–9876.
[178]  Li, Y.; Wang, P.; Xu, J.; Desir, G.V. Voltage-gated potassium channel kv1.3 regulates glut4 trafficking to the plasma membrane via a Ca2+-dependent mechanism. Am. J. Physiol. Cell Physiol. 2006, 290, C345–C351.
[179]  Villalonga, N.; Escalada, A.; Vicente, R.; Sánchez-Tilló, E.; Celada, A.; Solsona, C.; Felipe, A. Kv1.3/kv1.5 heteromeric channels compromise pharmacological responses in macrophages. Biochem. Biophys. Res. Commun. 2007, 352, 913–918, doi:10.1016/j.bbrc.2006.11.120.
[180]  Varga, Z.; Gurrola-Briones, G.; Papp, F.; Rodríguez de la Vega, R.C.; Pedraza-Alva, G.; Tajhya, R.B.; Gaspar, R.; Cardenas, L.; Rosenstein, Y.; Beeton, C.; Possani, L.D.; Panyi, G. Vm24, a natural immunosuppressive peptide, potently and selectively blocks kv1.3 potassium channels of human t cells. Mol. Pharmacol. 2012, 82, 372–382, doi:10.1124/mol.112.078006.
[181]  Eichhorn, B.; Dobrev, D. Vascular large conductance calcium-activated potassium channels: Functional role and therapeutic potential. Naunyn Schmiedebergs Arch. Pharmacol. 2007, 376, 145–155, doi:10.1007/s00210-007-0193-3.
[182]  Wang, Y.; Chen, X.; Zhang, N.; Wu, G.; Wu, H. The solution structure of bmtx3b, a member of the scorpion toxin subfamily alpha-ktx 16. Proteins 2005, 58, 489–497.
[183]  Yao, J.; Chen, X.; Li, H.; Zhou, Y.; Yao, L.; Wu, G.; Chen, X.; Zhang, N.; Zhou, Z.; Xu, T.; Wu, H.; Ding, J. Bmp09, a “long chain” scorpion peptide blocker of bk channels. J. Biol. Chem. 2005, 280, 14819–14828.
[184]  Zuberi, S.M.; Eunson, L.H.; Spauschus, A.; de Silva, R.; Tolmie, J.; Wood, N.W.; McWilliam, R.C.; Stephenson, J.B.; Kullmann, D.M.; Hanna, M.G. A novel mutation in the human voltage-gated potassium channel gene (kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy. Brain 1999, 122, 817–825, doi:10.1093/brain/122.5.817.
[185]  Angulo, E.; Noé, V.; Casadó, V.; Mallol, J.; Gomez-Isla, T.; Lluis, C.; Ferrer, I.; Ciudad, C.J.; Franco, R. Up-regulation of the kv3.4 potassium channel subunit in early stages of alzheimer’s disease. J. Neurochem. 2004, 91, 547–557, doi:10.1111/j.1471-4159.2004.02771.x.
[186]  Biervert, C.; Schroeder, B.C.; Kubisch, C.; Berkovic, S.F.; Propping, P.; Jentsch, T.J.; Steinlein, O.K. A potassium channel mutation in neonatal human epilepsy. Science 1998, 279, 403–406, doi:10.1126/science.279.5349.403.
[187]  Wickenden, A.D.; McNaughton-Smith, G. Kv7 channels as targets for the treatment of pain. Curr. Pharm. Des. 2009, 15, 1773–1798, doi:10.2174/138161209788186326.
[188]  Abdel-Mottaleb, Y.; Clynen, E.; Jalali, A.; Bosmans, F.; Vatanpour, H.; Schoofs, L.; Tytgat, J. The first potassium channel toxin from the venom of the iranian scorpion odonthobuthus doriae. FEBS Lett. 2006, 580, 6254–6258.
[189]  Vacher, H.; Diochot, S.; Bougis, P.E.; Martin-Eauclaire, M.F.; Mourre, C. Kv4 channels sensitive to bmtx3 in rat nervous system: Autoradiographic analysis of their distribution during brain ontogenesis. Eur. J. Neurosci. 2006, 24, 1325–1340, doi:10.1111/j.1460-9568.2006.05020.x.
[190]  Unaids Data Tables 2011, United Nations, Geneva, Switzerland, 2011.
[191]  Kripke, C. Antiretroviral prophylaxis for occupational exposure to hiv. Am. Fam. Physician. 2007, 76, 375–376.
[192]  Li, C.; Dowd, C.S.; Zhang, W.; Chaiken, I.M. Phage randomization in a charybdotoxin scaffold leads to cd4-mimetic recognition motifs that bind hiv-1 envelope through non-aromatic sequences. J. Pept. Res. 2001, 57, 507–518, doi:10.1046/j.1397-002X.2001.00876.x.
[193]  Vita, C.; Drakopoulou, E.; Vizzavona, J.; Rochette, S.; Martin, L.; Ménez, A.; Roumestand, C.; Yang, Y.S.; Ylisastigui, L.; Benjouad, A.; Gluckman, J.C. Rational engineering of a miniprotein that reproduces the core of the cd4 site interacting with hiv-1 envelope glycoprotein. Proc. Natl. Acad. Sci. USA 1999, 96, 13091–13096.
[194]  Mouhat, S.; Visan, V.; Ananthakrishnan, S.; Wulff, H.; Andreotti, N.; Grissmer, S.; Darbon, H.; de Waard, M.; Sabatier, J.M. K+ channel types targeted by synthetic osk1, a toxin from orthochirus scrobiculosus scorpion venom. Biochem. J. 2005, 385, 95–104, doi:10.1042/BJ20041379.
[195]  Han, S.; Yi, H.; Yin, S.J.; Chen, Z.Y.; Liu, H.; Cao, Z.J.; Wu, Y.L.; Li, W.X. Structural basis of a potent peptide inhibitor designed for kv1.3 channel, a therapeutic target of autoimmune disease. J. Biol. Chem. 2008, 283, 19058–19065.
[196]  Renisio, J.G.; Romi-Lebrun, R.; Blanc, E.; Bornet, O.; Nakajima, T.; Darbon, H. Solution structure of bmktx, a K+ blocker toxin from the chinese scorpion buthus martensi. Proteins 2000, 38, 70–78, doi:10.1002/(SICI)1097-0134(20000101)38:1<70::AID-PROT8>3.0.CO;2-5.
[197]  Filler, S.J.; MacArthur, J.R.; Parise, M.; Wirtz, R.; Eliades, M.J.; Dasilva, A.; Steketee, R. Centers for disease control and prevention locally Acquired mosquito-transmitted malaria: A guide for investigations in the United States. Morb. Mortal. Wkly. Rep. 2006, 55, 1–9.
[198]  Zhu, S.; Gao, B.; Aumelas, A.; del Carmen Rodríguez, M.; Lanz-Mendoza, H.; Peigneur, S.; Diego-Garcia, E.; Martin-Eauclaire, M.F.; Tytgat, J.; Possani, L.D. Meutxkbeta1, a scorpion venom-derived two-domain potassium channel toxin-like peptide with cytolytic activity. Biochim. Biophys. Acta 2010, 1804, 872–873, doi:10.1016/j.bbapap.2009.12.017.
[199]  Gao, B.; Xu, J.; Rodriguez Mdel, C.; Lanz-Mendoza, H.; Hernández-Rivas, R.; Du, W.; Zhu, S. Characterization of two linear cationic antimalarial peptides in the scorpion mesobuthus eupeus. Biochimie 2010, 92, 350–359, doi:10.1016/j.biochi.2010.01.011.
[200]  He, Q.Y.; He, Q.Z.; Deng, X.C.; Yao, L.; Meng, E.; Liu, Z.H.; Liang, S.P. Atdb: A uni-database platform for animal toxins. Nucleic Acids Res. 2008, 36, D293–D297.
[201]  Lim, E.; Pon, A.; Djoumbou, Y.; Knox, C.; Shrivastava, S.; Guo, A.C.; Neveu, V.; Wishart, D.S. T3db: A comprehensively annotated database of common toxins and their targets. Nucleic Acids Res. 2010, 38, D781–D786, doi:10.1093/nar/gkp934.
[202]  Wood, D.L.; Miljenovi?, T.; Cai, S.; Raven, R.J.; Kaas, Q.; Escoubas, P.; Herzig, V.; Wilson, D.; King, G.F. Arachnoserver: A database of protein toxins from spiders. BMC Genomics 2009, 10, 375, doi:10.1186/1471-2164-10-375.
[203]  Herzig, V.; Wood, D.L.; Newell, F.; Chaumeil, P.A.; Kaas, Q.; Binford, G.J.; Nicholson, G.M.; Gorse, D.; King, G.F. Arachnoserver 2.0, an updated online resource for spider toxin sequences and structures. Nucleic Acids Res. 2011, 39, D653–D657.
[204]  Kaas, Q.; Westermann, J.C.; Halai, R.; Wang, C.K.; Craik, D.J. Conoserver, a database for conopeptide sequences and structures. Bioinformatics 2008, 24, 445–446, doi:10.1093/bioinformatics/btm596.
[205]  Kaas, Q.; Westermann, J.C.; Craik, D.J. Conopeptide characterization and classifications: An analysis using conoserver. Toxicon 2010, 55, 1491–1509, doi:10.1016/j.toxicon.2010.03.002.
[206]  Kaas, Q.; Yu, R.; Jin, A.H.; Dutertre, S.; Craik, D.J. Conoserver: Updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res. 2012, 40, D325–D330, doi:10.1093/nar/gkr886.
[207]  Srinivasan, K.N.; Gopalakrishnakone, P.; Tan, P.T.; Chew, K.C.; Cheng, B.; Kini, R.M.; Koh, J.L.; Seah, S.H.; Brusic, V. Scorpion, a molecular database of scorpion toxins. Toxicon 2002, 40, 23–31.
[208]  Tan, P.T.; Veeramani, A.; Srinivasan, K.N.; Ranganathan, S.; Brusic, V. Scorpion2: A database for structure-function analysis of scorpion toxins. Toxicon 2006, 47, 356–363, doi:10.1016/j.toxicon.2005.12.001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133