Naja kaouthia (monocled cobra) venom contains many isoforms of secreted phospholipase A2 (sPLA2). The PLA2 exerts several pharmacologic and toxic effects in the snake bitten subject, dependent or independent on the enzymatic activity. N. kaouthia venom appeared in two protein profiles, P3 and P5, after fractionating the venom by ion exchange column chromatography. In this study, phage clones displaying humanized-camel single domain antibodies (VH/VHH) that bound specifically to the P3 and P5 were selected from a humanized-camel VH/VHH phage display library. Two phagemid transfected E. coli clones (P3-1 and P3-3) produced humanized-VHH, while another clone (P3-7) produced humanized-VH. At the optimal venom:antibody ratio, the VH/VHH purified from the E. coli homogenates neutralized PLA2 enzyme activity comparable to the horse immune serum against the N. kaouthia holo-venom. Homology modeling and molecular docking revealed that the VH/VHH covered the areas around the PLA2 catalytic groove and inserted their Complementarity Determining Regions (CDRs) into the enzymatic cleft. It is envisaged that the VH/VHH would ameliorate/abrogate the principal toxicity of the venom PLA2 (membrane phospholipid catabolism leading to cellular and subcellular membrane damage which consequently causes hemolysis, hemorrhage, and dermo-/myo-necrosis), if they were used for passive immunotherapy of the cobra bitten victim. The speculation needs further investigations.
References
[1]
Kulkeaw, K.; Chaicumpa, W.; Sakolvaree, Y.; Tongtawe, P.; Tapchaisri, P. Proteome and immunome of the venom of the Thai cobra, Naja kaouthia. Toxicon 2007, 49, 1026–1041, doi:10.1016/j.toxicon.2007.01.019.
[2]
Mebs, D.; Claus, I. Amino acid sequences and toxicities of snake venom components. In Snake Toxins; Harvey, A.L., Ed.; Pegamon Press: New York, NY, USA, 1991; pp. 425–447.
[3]
Armugam, A.; Earnest, L.; Chung, M.C.; Copalakrishnakone, P.; Tan, C.H.; Tan, N.H.; Jeyaseelan, K. Cloning and characterization of cDNAs encoding three isoforms of phospholipase A2 in Malayan spitting cobra (Naja naja sputatrix) venom. Toxicon 1997, 35, 27–37, doi:10.1016/S0041-0101(96)00071-2.
Doley, R.; Mukherjee, A.K. Purification and characterization of an anticoagulant phospholipase A2 from Indian monocled cobra (Naja kaouthia) venom. Toxicon 2003, 41, 81–91, doi:10.1016/S0041-0101(02)00213-1.
[6]
Dennis, E.A. Diversity of group types, regulation, and function of phospholipase A2. J. Biol. Chem. 1994, 269, 13057–13060. 8175726
[7]
Bingham, C.O., III; Austen, K.F. Phospholipase A2 enzymes in eicosanoid generation. Proc. Assoc. Am. Phys. 1999, 111, 516–524, doi:10.1046/j.1525-1381.1999.99321.x.
[8]
Doley, R.; King, G.F.; Mukherjee, A.K. Differential hydrolysis of erythrocyte and mitochondrial membrane phospholipids by two phospholipase A2 isoenzymes (NK-PLA2-I and NK-PLA2-II) from venom of the Indian monocle cobra, Naja kaouthia. Arch. Biochem. Biophys. 2004, 425, 1–13, doi:10.1016/j.abb.2004.02.007.
[9]
Evans, J.; Ownby, C.L. Neutralization of edema, hemorrhage and myonecrosis induced by North American crotalid venoms in simulated first-aid treatments. Toxicon 1999, 37, 633–650, doi:10.1016/S0041-0101(98)00202-5.
Kini, R.M. Anticoagulant proteins from snake venoms: Structure, function and mechanism. Biochem. J. 2006, 397, 377–387, doi:10.1042/BJ20060302.
[12]
Khandelwal, G.; Katx, K.D.; Brooks, D.E.; Gonzales, S.M.; Ulishney, C.D. Naja kaouthia: Two cases of Asiatic cobra envenomations. J. Emerg. Med. 2007, 2, 171–174.
[13]
Sekhar, C.C.; Chakrabarty, D. Fibrinolytic toxin from Indian monocle cobra (Naja kaouthia) venom. J. Biosci. 2011, 36, 355–361, doi:10.1007/s12038-011-9068-3.
[14]
Zhang, H.L.; Xu, S.J.; Wang, Q.Y.; Song, S.Y.; Shu, Y.Y.; Lin, Z.J. Structure of a cardiotoxic phospholipase A(2) from Ophiophagus hannah with the “pancreatic loop”. J. Struct. Biol. 2002, 138, 207–215, doi:10.1016/S1047-8477(02)00022-9.
[15]
Lizano, S.; Angulo, Y.; Lomonte, B.; Fox, J.W.; Lambeau, G.; Lazdunski, M.; Guyierrez, M.G. Two phospholipase A2 inhibitors from the plasma of Cerrophidion (Bothrops) godmani which selectively inhibit two different group-II phospholipase A2 myotoxins from its own venom: Isolation, molecular cloning and biological properties. Biochem. J. 2000, 346, 631–639, doi:10.1042/0264-6021:3460631.
[16]
Alzogaray, V.; Danquah, W.; Aguirre, A.; Urrutia, M.; Berguer, P.; García Véscovi, E.; Haag, F.; Koch-Nolte, F.; Goldbaum, F.A. Single-domain llama antibodies as specific intracellular inhibitors of SpvB, the actin ADP-ribosylating toxin of Salmonella typhimurium. FASEB J. 2011, 25, 526–534, doi:10.1096/fj.10-162958. 20940265
[17]
Harmsen, M.M.; de Haard, H.J. Properties, production and applications of camelid single-domain antibody fragments. Appl. Microbiol. Biotechnol. 2007, 7, 13–22.
[18]
Lauwereys, M.; Arbabi Ghahroudi, M.; Desmyter, A.; Kinne, J.; H?lzer, W.; de Genst, E.; Wyns, L.; Muyldermans, S. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J. 1998, 17, 3512–3520, doi:10.1093/emboj/17.13.3512. 9649422
[19]
Thanongsaksrikul, J.; Srimanote, P.; Maneewatch, S.; Choowongkomon, K.; Tapchaisri, P.; Makino, S.; Kurazono, H.; Chaicumpa, W. A VHH that neutralizes the zinc metalloproteinase activity of botulinum neurotoxin type A. J. Biol. Chem. 2010, 285, 9657–9666, doi:10.1074/jbc.M109.073163. 20093370
[20]
Thanongsaksrikul, J.; Chaicumpa, W. Botulinum neurotoxin and botulinum: A novel therapeutic approach. Toxins 2011, 3, 469–488, doi:10.3390/toxins3050469.
[21]
Karlsson, E.; Amberg, H.; Waker, D. Isolation of the principal neurotoxins of two Naja naja subspecies. Eur. J. Biochem. 1971, 21, 1–16, doi:10.1111/j.1432-1033.1971.tb01433.x.
IMGT Home page. IMGT Tools: IMGT/V-QUEST. Available online: http://www.imgt.org (accessed on 19 May 2012).
[24]
Poungpair, O.; Pootong, A.; Maneewatch, S.; Srimanote, P.; Tongtawe, P.; Songserm, T.; Tapchaisri, P.; Chaicumpa, W. A human single chain transbody specific to matrix protein (M1) interferes with the replication of influenza A virus. Bioconjug. Chem. 2010, 21, 1134–1141, doi:10.1021/bc900251u.
[25]
Kini, R.M.; Evans, H.J. A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon 1989, 27, 613–635, doi:10.1016/0041-0101(89)90013-5.
[26]
Kulkeaw, K. Production of Human Anti-Naja kaouthia Venom by Antibody Phage Display Library. Thammasat University: Pathumthani, Thailand, 2008.
[27]
Gu, L.; Wang, Z.; Song, S.; Shu, Y.; Lin, Z. Crystal structures of an acidic phospholipase A2 from the venom of Naja kaouthia. Toxicon 2002, 40, 917–922, doi:10.1016/S0041-0101(02)00085-5.
[28]
Kang, T.S.; Georgieva, D.; Genov, N.; Murakami, M.T.; Sinha, M.; Kumar, R.P.; Kaur, P.; Kumar, S.; Dey, S.; Sharma, S.; et al. Enzymatic toxins from snake venom: Structural characterization and mechanism of catalysis. FEBS J. 2011, 278, 4544–4576, doi:10.1111/j.1742-4658.2011.08115.x. 21470368