A divalent cation-independent lectin—HOL-18, with cytotoxic activity against leukemia cells, was purified from a demosponge, Halichondria okadai. HOL-18 is a 72 kDa tetrameric lectin that consists of four non-covalently bonded 18 kDa subunits. Hemagglutination activity of the lectin was strongly inhibited by chitotriose (GlcNAcβ1-4GlcNAcβ1-4GlcNAc), fetuin and mucins from porcine stomach and bovine submaxillary gland. Lectin activity was stable at pH 4–12 and temperatures lower than 60 °C. Frontal affinity chromatography with 16 types of pyridylaminated oligosaccharides indicated that the lectin had an affinity for N-linked complex-type and sphingolipid-type oligosaccharides with N-acetylated hexosamines and neuramic acid at the non-reducing termini. The lectin killed Jurkat leukemia T cells and K562 erythroleukemia cells in a dose- and carbohydrate-dependent manner.
References
[1]
Ogawa, T.; Watanabe, M.; Naganuma, T.; Muramoto, K. Diversified carbohydrate-binding lectins from marine resources. J. Amino Acids 2011, 2011. 22312468
[2]
Paunto, P.C.; de Sukva, M.A.; Linardi, A.; Buzin, M.P.; Melo, S.E.S.F.C.; Mello, S.M.; Prado-Franceschi, J.; Hyslop, S. Biological activities of a lectin from Bothrops jararacussu snake venom. Toxicon 2006, 47, 21–31, doi:10.1016/j.toxicon.2005.08.012.
[3]
Sriwilaijaroen, N.; Kondo, S.; Yagi, H.; Wilairat, P.; Hiramatsu, H.; Ito, M.; Ito, Y.; Kato, K.; Suzuki, Y. Analysis of N-glycans in embrhonated chicken egg chorioallantoic and amniotic cells responsible for binding and adaptation of human and avian influenza viruses. Glycoconj. J. 2009, 26, 433–443, doi:10.1007/s10719-008-9193-x.
[4]
Bai, R.; Nguyen, T.L.; Burnett, J.C.; Atasoylu, O.; Munro, M.H.; Pettit, G.R.; Smith, A.B.; Gussio, R.; Hamel, E. Interaction of halichondrin B and eribulin with tubulin. J. Chem. Inf. Model 2011, 51, 1393–1404, doi:10.1021/ci200077t. 21539396
[5]
Schr?der, H.C.; Breter, H.C.; Fattorusso, E.; Ushijima, H.; Wiens, M.; Steffen, R.; Batel, R.; Müller, W.E.G. Okadaic acid, an apoptogenic toxin form symbiotic parasitic annelids in the demosponge Suberites domuncula. Appl. Environ. Microbiol. 2006, 72, 4907–4916, doi:10.1128/AEM.00228-06. 16820487
[6]
Pfeifer, K.; Haasemann, M.; Gamulin, V.; Bretting, H.; Fahrenholz, F.; Müller, W.E.G. S-type lectins occur also in invertebrates: High conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiology 1993, 3, 179–184, doi:10.1093/glycob/3.2.179.
[7]
Schr?der, H.C.; Boreiko, A.; Korzhev, M.; Tahir, M.N.; Tremel, W.; Eckert, C.; Ushijima, H.; Müller, I.M.; Müller, W.E.G. Co-expression and functional interaction of silicatein with galectin; matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. J. Biol. Chem. 2006, 281, 12001–12009, doi:10.1074/jbc.M512677200. 16495220
[8]
Dresh, R.R.; Zanetti, G.D.; Lerner, C.B.; Trindade, V.M.; Henriques, A.T.; Vozári-Hampe, M.M. ACL-1, a lectin from the marine sponge Axinella corrugate: Isolation, characterization and chemotactic activity. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2008, 148, 23–30, doi:10.1016/j.cbpc.2008.03.003. 18424185
[9]
Schr?der, H.C.; Ushijima, H.; Krasko, A.; Gamulin, V.; Thakur, N.L.; Diehl-Seifert, B.; Müller, I.M.; Müller, W.E.G. Emergence and disappearance of an immune molecule, an antimicrobial lectin, in basal metazoa; a tachylectin-related protein in the sponge Suberites domuncula. J. Biol. Chem. 2003, 278, 32810–32817, doi:10.1074/jbc.M304116200. 12805362
[10]
Funayama, N.; Nakatsukasa, M.; Kuraku, S.; Takechi, K.; Dohi, M.; Iwabe, N.; Miyata, T.; Agata, K. Isolation of Ef silicatein and Ef lectin as molecular markers for sclerocytes and cells involved in innate immunity in the freshwater sponge Ephydatia fluviatilis. Zool. Sci. 2005, 22, 1113–1122, doi:10.2108/zsj.22.1113.
[11]
Kawsar, S.M.A.; Fujii, Y.; Matsumoto, R.; Ichikawa, T.; Tateno, H.; Hirabayashi, J.; Yasumitsu, H.; Dogasaki, C.; Hosono, M.; Nitta, K.; Hamako, J.; Matsui, T.; Ozeki, Y. Isolation, purification, characterization and glycan-binding profile of a D-galactoside specific lectin from the marine sponge, Halichondria okad. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008, 150, 349–357, doi:10.1016/j.cbpb.2008.04.004.
[12]
Kawagishi, H.; Yamawaki, M.; Isobe, S.; Usui, T.; Kimura, A.; Chiba, S. Two lectins from the marine sponge Halichondria okadai. An N-acetyl-sugar-specific lectin (HOL-I) and an N-acetyllactosamine-specific lectin (HOL-II). J. Biol. Chem. 1994, 269, 1375–1379. 8288604
[13]
Hirabayashi, J.; Arata, Y.; Kasai, K-I. Frontal affinity chromatography as a tool for elucidation of sugar recognition properties of lectins. Methods Enzymol. 2003, 362, 353–368. 12968376
[14]
Hirabayashi, J.; Hashidate, T.; Arata, Y.; Nishi, N.; Nakamura, T.; Hirashima, M.; Urashima, T.; Oka, T.; Futai, M.; Müller, W.E.G.; Yagi, F.; Kasai, K. Oligosaccharide specificity of galectins: A search by frontal affinity chromatography. Biochim.Biophys. Acta 2002, 1572, 232–254, doi:10.1016/S0304-4165(02)00311-2.
[15]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685, doi:10.1038/227680a0. 5432063
[16]
Wiechelman, K.J.; Braun, R.D.; Fitzpatrick, J.D. Investigation of the bicinchoninic acid protein assay: Identification of the groups responsible for color formation. Anal. Biochem. 1988, 175, 231–237, doi:10.1016/0003-2697(88)90383-1. 3245570
Kyhse-Andersen, J. Electroblotting of multiple gels a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J. Biochem. Biophys. Methods 1984, 10, 203–209, doi:10.1016/0165-022X(84)90040-X. 6530509
[19]
Dutta, C.; Henry, H.L. Detection of hemoprotein peroxidase activity on polyvinylidene difluoride membrane. Anal. Biochem. 1990, 184, 96–99, doi:10.1016/0003-2697(90)90018-5.
[20]
Gourdine, J.P.; Cioci, G.; Miguet, L.; Unverzagt, C.; Silva, D.V.; Varrot, A.; Gautier, C.; Smith-Ravin, E.J.; Imberty, A. High affinity interaction between a bivalve C-type lectin and a biantennary complex-type N-glycan revealed by crystallography and microcalorimetry. J. Biol. Chem. 2008, 283, 30112–30120, doi:10.1074/jbc.M804353200. 18687680
[21]
Shinohara, Y.; Kim, F.; Shimizu, M.; Goto, M.; Tosu, M.; Hasegawa, Y. Kinetic measurement of the interaction between an oligosaccharide and lectins by a biosensor based on surface plasmon resonance. Eur. J. Biochem. 1994, 223, 189–194, doi:10.1111/j.1432-1033.1994.tb18982.x. 7518391
[22]
Kawano, T.; Sugawara, S.; Hosono, M.; Tatsuta, T.; Ogawa, Y.; Fujimura, T.; Taka, H.; Murayama, K.; Nitta, K. Globotriaosylceramide-expressing Burkitt’s lymphoma cells are committed to early apoptotic status by rhamnose-binding lectin from catfish eggs. Biol. Pharm. Bull. 2009, 32, 345–353, doi:10.1248/bpb.32.345. 19252276
[23]
Piller, V.; Piller, F.; Fukuda, M. Biosysthesis of truncated O-glycans in the T cell line Jurkat. Localization of O-glycan initiation. J. Biol. Chem. 1990, 265, 9264–9271. 2140570
[24]
Yamada, K.; Hyodo, S.; Matsuno, Y.K.; Kinoshita, M.; Maruyama, S.Z.; Osaka, Y.S.; Casal, E.; Lee, Y.C.; Kakehi, K. Rapid and sensitive analysis of mucin-type glycans using an in line flow glycan-releasing apparatus. Anal.Biochem. 2007, 371, 52–61, doi:10.1016/j.ab.2007.06.013. 17632070
[25]
Baenziger, J.U.; Fiete, D. Structure of the complex oligosaccharides of fetuin. J. Biol. Chem. 1979, 254, 789–795. 83994
[26]
Ehrlich, H.; Maldonado, M.; Spindler, K.D.; Eckert, C.; Hanke, T.; Born, R.; Glebel, C.; Simon, P.; Heinemann, S. First evidence of chitin as a component of the skeletal fibers of marine sponges. Part 1 Verongidea (demospongia Porifera). J. Exp. Zool. B Mol. Dev. Evol. 2007, 308, 347–356. 17285638
[27]
Fujita, Y.; Ohsima, N.; Hasegawa, A.; Schweizer, F.; Takeda, T.; Kiuchi, F.; Hada, N. Synthesis, inhibitory effects on nitric oxide and structure activity relationships of a glycosphingolipid from the marine sponge Aplysinella rhax and its analogues. Molecules 2011, 16, 637–651, doi:10.3390/molecules16010637.