全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Toxins  2012 

Current Understanding on Aflatoxin Biosynthesis and Future Perspective in Reducing Aflatoxin Contamination

DOI: 10.3390/toxins4111024

Keywords: aflatoxins, mycotoxins, Aspergillus flavus, gene cluster, gene regulation, biocontrol, food contaminants

Full-Text   Cite this paper   Add to My Lib

Abstract:

Traditional molecular techniques have been used in research in discovering the genes and enzymes that are involved in aflatoxin formation and genetic regulation. We cloned most, if not all, of the aflatoxin pathway genes. A consensus gene cluster for aflatoxin biosynthesis was discovered in 2005. The factors that affect aflatoxin formation have been studied. In this report, the author summarized the current status of research progress and future possibilities that may be used for solving aflatoxin contamination.

References

[1]  Brakhage, A.A.; Schuemann, J.; Bergmann, S.; Scherlach, K.; Schroeckh, V.; Hertweck, C. Activation of fungal silent gene clusters: A new avenue to drug discovery. Prog. Drug Res. 2008, 66, 3–12.
[2]  Hoffmeister, D.; Keller, N.P. Natural products of filamentous fungi: Enzymes, genes, and their regulatio. Nat. Prod. Rep. 2007, 24, 393–416, doi:10.1039/b603084j.
[3]  Keller, N.P.; Turner, G.; Bennett, J.W. Fungal secondary metabolism—From biochemistry to genomics. Nat. Rev. Microbiol. 2005, 3, 937–947, doi:10.1038/nrmicro1286.
[4]  Sweeney, M.J.; Dobson, A.D. Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int. J. Food Microbiol. 1998, 43, 141–158, doi:10.1016/S0168-1605(98)00112-3.
[5]  Klich, M.A. Soil fungi of some low-altitude desert cotton fields and ability of their extracts to inhibit Aspergillus flavus. Mycopathologia 1998, 142, 97–100, doi:10.1023/A:1006989712282.
[6]  Bennett, J.W.; Leong, P.M.; Kruger, S.J.; Keyes, D. Sclerotial and low aflatoxigenic morphological variants from haploid and diploid Aspergillus parasiticus. Experientia 1986, 42, 848–851, doi:10.1007/BF01941550.
[7]  Cotty, P. Aflatoxin and sclerotial production by Aspergillus flavus: Influence of pH. Phytopathol 1988, 78, 1250–1253, doi:10.1094/Phyto-78-1250.
[8]  Chang, P.K.; Bennett, J.W.; Cotty, P.J. Association of aflatoxin biosynthesis and sclerotial development in Aspergillus parasiticus. Mycopathologia 2002, 153, 41–48, doi:10.1023/A:1015211915310.
[9]  St Leger, R.J.; Screen, S.E.; Shams-Pirzadeh, B. Lack of host specialization in Aspergillus flavus. Appl. Environ. Microbiol. 2000, 66, 320–324, doi:10.1128/AEM.66.1.320-324.2000.
[10]  Richard, J.L.; Payne, G.A. Mycotoxins: Risks in Plant, Animal and Human Systems; Council for Agricultural Science and Technology (CAST): Ames, IA, USA, 2003.
[11]  Robens, J.F.; Cardwell, K. The costs of mycotoxin management to the USA: Management of aflatoxins in the United States. J. Toxicol. 2003, 22, 139–152.
[12]  Robens, J.F.; Cardwell, K. The Cost of Mycotoxin Management in the United States. In Aflatoxin and Food Safety; Abbas, H.K., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 1–12.
[13]  Allcroft, R.; Carnaghan, R.B.A.; Sargeant, K.; O’Kelly, J. A toxic factor in Brazilian groundnut meal. Vet. Rec. 1961, 73, 428–429.
[14]  Lancaster, M.D.; Jenkins, F.P.; Philip, J.M. Toxicity associated with certain samples of ground nuts. Nature 1961, 192, 1095–1096.
[15]  Van Egmond, H.P. Current situation on regulations for mycotoxins. Overview of tolerances and status of standard methods of sampling and analysis. J. Food Addit. Contam. 1989, 6, 139–188, doi:10.1080/02652038909373773.
[16]  Goto, T.; Wicklow, D.T.; Ito, Y. Aflatoxin and cyclopiazonic acid production by a sclerotium-producing Aspergillus tamarii strain. Appl. Environ. Microbiol. 1996, 62, 4036–4038.
[17]  Eaton, D.; Gallagher, E. Mechanisms of aflatoxin carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 1994, 34, 135–172, doi:10.1146/annurev.pa.34.040194.001031.
[18]  Hsieh, D.P.H. Potential Human Health Hazards of Mycotoxins. In Mycotoxins and Phycotoxins; Natori, S., Hashimoto, H., Ueno, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 1989; pp. 69–80.
[19]  Ngindu, A.; Johnson, B.K.; Kenya, P.R.; Ngira, J.A.; Ocheng, D.M.; Nandwa, H.; Omondi, T.N.; Jansen, A.J.; Ngare, W.; Kaviti, J.N.; et al. Outbreak of acute hepatitis caused by aflatoxin poisoning in Kenya. Lancet 1982, 1, 1346–1348.
[20]  Lewis, L.; Onsongo, M.; Njapau, H.; Schurz-Rogers, H.; Luber, G.; Kieszak, S.; Nyamongo, J.; Backer, L.; Dahiye, A.M.; Misore, A.; et al. Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environ. Health Perspect. 2005, 113, 1763–1767, doi:10.1289/ehp.7998.
[21]  Baertschi, S.W.; Raney, K.D.; Shimada, T.; Harris, T.M.; Guengerich, F.P. Comparison rates of enzymatic oxidation of aflatoxin B1, aflatoxin G1, and sterigmatocystin and activities of the epoxides in forming guanyl-N adducts and inducing different genetic responses. Chem. Res. Toxicol. 1989, 2, 114–122, doi:10.1021/tx00008a008.
[22]  Bressac, B.; Kew, M.; Wands, J.; Ozturk, M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 1991, 350, 429–431.
[23]  Coursaget, P.; Depril, N.; Chabaud, M.; Nandi, R.; Mayelo, V.; LeCann, P.; Yvonnet, B. High prevalence of mutations at codon 249 of the p53 gene in hyptocellular carcinomas from Senegal. Br. J. Cancer 1993, 67, 1395–1397, doi:10.1038/bjc.1993.258.
[24]  Hsu, I.C.; Metcalf, R.A.; Sun, T.; Welsh, J.A.; Wang, N.J.; Harris, C.C. Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 1991, 350, 427–428.
[25]  Ozturk, M. p53 mutation in hepatocellular carcinoma after aflatoxin exposure. Lancet 1991, 338, 1356–1359.
[26]  Busby, W.F., Jr.; Wogan, G.N. Aflatoxins. In Mycotoxins and N-Nitrosocompounds: Environmental Risks; Shank, R.C., Ed.; CRC Press: Boca Raton, FL, USA, 1981; Volume 2, pp. 3–45.
[27]  Groopman, J.D.; Wogan, G.N.; Roebuck, B.D.; Kensler, T.W. Molecular biomarkers for aflatoxins and their application to human cancer prevention. Cancer Res. 1994, 54, 190–191.
[28]  Raisuddin, S.; Singh, K.P.; Zaidi, S.I.; Paul, B.N.; Ray, P.K. Immunosuppressive effects of aflatoxin in growing rats. Mycopathologia 1993, 124, 189–194, doi:10.1007/BF01103737.
[29]  Kelly, J.D.; Eaton, D.L.; Guengerich, F.P.; Coulombe, R.A., Jr. Aflatoxin B1 activation in human lung. Toxicol. Appl. Pharmacol. 1997, 144, 88–95, doi:10.1006/taap.1997.8117.
[30]  Wild, C.P.; Shrestha, S.M.; Anwar, W.A.; Montesano, R. Field studies of aflatoxin exposure, metabolism and induction of genetic alterations in relation to HBV infection and hepatocellular carcinoma in the Gambia and Thailand. Toxicol. Lett. 1992, 64-65, 455–461, doi:10.1016/0378-4274(92)90219-A.
[31]  Peers, F.; Bosch, X.; Kaldor, J.; Linsell, A.; Pluijmen, M. Aflatoxin exposure, hepatitis B virus infection and liver cancer in Swaziland. Int. J.Cancer 1987, 39, 545–553, doi:10.1002/ijc.2910390502.
[32]  McGlynn, K.A.; Hunter, K.; LeVoyer, T.; Roush, J.; Wise, P.; Michielli, R.A.; Shen, F.M.; Evans, A.A.; London, W.T.; Buetow, K.H. Susceptibility to aflatoxin B1-related primary hepatocellular carcinoma in mice and humans. Cancer Res. 2003, 63, 4594–4601.
[33]  Arsura, M.; Cavin, L.G. Nuclear factor-kappaB and liver carcinogenesis. Cancer Lett. 2005, 229, 157–169, doi:10.1016/j.canlet.2005.07.008.
[34]  Chen, C.J.; Wang, L.Y.; Lu, S.N.; Wu, M.H.; You, S.L.; Zhang, Y.J.; Wang, L.W.; Santella, R.M. Elevated aflatoxin exposure and increased risk of hepatocellular carcinoma. Hepatology 1996, 24, 38–42.
[35]  Chen, C.J.; Yu, M.W.; Liaw, Y.F.; Wang, L.W.; Chiamprasert, S.; Matin, F.; Hirvonen, A.; Bell, D.A.; Santella, R.M. Chronic hepatitis B carriers with null genotypes of glutathione S transferase MI and TI polymorphisms who are exposed to aflatoxin are at increased risk of hepatocellular carcinoma. Am. J. Human Genet. 1996, 59, 128–134.
[36]  Williams, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, J.K.; Jolly, C.M.; Aggarwal, D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 2004, 80, 1106–1122.
[37]  Krishnamachari, K.A.; Bhat, R.V.; Nagarajan, V.; Tilak, T.B. Hepatitis due to aflatoxicosis: An outbreak of hepatitis in parts of western India. Lancet 1975, 1, 1061–1063.
[38]  Fung, F.; Clark, R.F. Health effects of mycotoxins: A toxicological overview. J. Toxicol. Clin. Toxicol. 2004, 42, 217–234, doi:10.1081/CLT-120030947.
[39]  Wogan, G.N. Aflatoxins as risk factors for hepatocellular carcinoma in humans. Cancer Res. 1992, 52, 2114–2118.
[40]  Wogan, G.N. Impacts of chemicals on liver cancer risk. Semin. Cancer Biol. 2000, 10, 201–210, doi:10.1006/scbi.2000.0320.
[41]  The US Food and Drug Administration. Toxic pet food may have killed dozens of dogs. Available online: http://www.msnbc.msn.com/id/10771943/ns/health-pet_health/t/toxic-pet-food-may-have-killed-dozens-dogs/ (accessed on 10 May 2006).
[42]  Van Egmond, H.P.; Schothorst, R.C.; Jonker, M.A. Regulations relating to mycotoxins in food: Perspectives in a global and European context. Anal. Bioanal. Chem. 2007, 389, 147–157, doi:10.1007/s00216-007-1317-9.
[43]  Van Egmond, H.P.; Jonker, M.A. Worldwide Regulations on Aflatoxins; Abbas, H.K., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 77–93.
[44]  Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516, doi:10.1128/CMR.16.3.497-516.2003.
[45]  Bennett, J.W. Mycotoxins, mycotoxicoses, mycotoxicology and mycopathologia. Mycopathologia 1987, 100, 3–5, doi:10.1007/BF00769561.
[46]  Bennett, J.W.; Lee, L.S. Mycotoxins—Their biosynthesis in fungi: Aflatoxins and other bisfuranoids. J. Food Protection 1979, 42, 805–809.
[47]  Bhatnagar, D.; Brown, R.; Ehrlich, K.; Cleveland, T.E. Mycotoxins Contaminating Cereal Grain Crops: Their Occurrence and Toxicity. In Applied Mycology and Biotechnology; Khachatourians, G.G., Arora, D.K., Eds.; Elsevier: New York, NY, USA, 2002; Volume 2, pp. 171–196.
[48]  Cleveland, T.E.; Bhatnagar, D. Molecular Strategies for Reducing Aflatoxin Levels in Crops Before Harvest. In Molecular Approaches to Improving Food Quality and Safety; Bhatnagar, D., Cleveland, T.E., Eds.; Van Nostrand Reinhold: New York, NY, USA, 1992; pp. 205–228.
[49]  Eaton, D.L.; Groopman, J.D. The Toxicology of Aflatoxins: Human Health, Veterinary, and Agricultural Significance; Academic Press: San Diego, CA, USA, 1994.
[50]  Hall, A.J.; Wild, C.P. Epidemiology of Aflatoxin-Related Disease. In The Toxicology of Aflatoxins: Human Health, Veterinary, and Agricultural Significance; Eaton, D.L., Groopman, J.D., Eds.; Academic Press: San Diego, CA, USA, 1994; pp. 233–258.
[51]  Jelinek, C.F.; Pohland, A.E.; Wood, G.E. Worldwide occurrence of mycotoxins in food and feeds—An update. J. Assoc. Off. Anal. Chem. 1989, 72, 223–230.
[52]  Papa, K.E. Linkage groups in Aspergillus flavus. Mycologia 1976, 68, 159–165, doi:10.2307/3758906.
[53]  Papa, K.E. Genetics of Aspergillus flavus: Complementation and mapping of aflatoxin mutants. Genet. Res. 1979, 34, 1–9, doi:10.1017/S0016672300019236.
[54]  Papa, K.E. Genetics of Aspergillus flavus: Linkage of aflatoxin mutants. Can. J. Microbiol. 1984, 30, 68–73, doi:10.1139/m84-012.
[55]  Bennett, J.W. Microbiological aspects of the aflatoxin problem. Am. Ass. Feed Microscop. Off. Proc. 1970, 18, 118–131.
[56]  Bennett, J.W.; Goldblatt, L.A. The isolation of mutants of Aspergillus flavus and A. parasiticus with altered aflatoxin producing ability. Sabouraudia 1973, 11, 235–241, doi:10.1080/00362177385190471.
[57]  Bennett, J.W.; Lee, L.S.; Cucullu, A.F. Effect of dichlorvos on aflatoxin and versicolorin A production in Aspergillus parasiticus. Bot. Gaz. 1976, 137, 318–324.
[58]  Bennett, J.W. Aflatoxins and anthraquinones from diploids of Aspergillus parasiticus. J. Gen. Microbiol. 1979, 113, 127–136, doi:10.1099/00221287-113-1-127.
[59]  Bennett, J.W.; Kronberg, F.G.; Goodman, L.A.; Seltman, M.A. Isolation of an anthraquinoe-accumulating mutant of Aspergillus parasiticus and partial characterization by dry column chromatography. Mycologia 1983, 75, 202–208.
[60]  Bennett, J.W.; Lee, L.S.; Vinnett, C.H. The correlation of aflatoxin and norsolorinic acid production. J. Am. Oil Chem. Soc. 1971, 48, 368–370, doi:10.1007/BF02890764.
[61]  Bennett, J.W.; Kronberg, F.; Gougis, G. Pigmented isolates from anthraquinone-producing mutants of Aspergillus parasiticus. Am. Soc. Microbiol. 1976, 76, 6.
[62]  Bennett, J.W.; Chang, P.K.; Bhatnagar, D. One gene to whole pathway: The role of norsolorinic acid in aflatoxin research. Adv. Appl. Microbiol. 1997, 45, 1–15, doi:10.1016/S0065-2164(08)70260-0.
[63]  Hsieh, D.P.; Lin, M.T.; Yao, R.C.; Singh, R. Biosynthesis of aflatoxin. Conversion of norsolorinic acid and other hypothetical intermediates into aflatoxin B1. J. Agric. Food Chem. 1976, 24, 1170–1174, doi:10.1021/jf60208a018.
[64]  Dutton, M.F. Enzymes and aflatoxin biosynthesis. Microbiol. Rev. 1988, 52, 274–295.
[65]  Hsieh, D.P.; Mateles, R.I. The relative contribution of acetate and glucose to aflatoxin biosynthesis. Biochem. Biophys. Acta 1970, 208, 482–486, doi:10.1016/0304-4165(70)90222-9.
[66]  Hsieh, D.P.; Lin, M.T.; Yao, R.C. Conversion of sterigmatocystin to aflatoxin B1 by Aspergillus parasiticus. Biochem. Biophys. Res. Commun. 1973, 52, 992–997, doi:10.1016/0006-291X(73)91035-8.
[67]  Yu, J.; Chang, P.K.; Cary, J.W.; Wright, M.; Bhatnagar, D.; Cleveland, T.E.; Payne, G.A.; Linz, J.E. Comparative mapping of aflatoxin pathway gene clusters in Aspergillus parasiticus and Aspergillus flavus. Appl. Environ. Microbiol. 1995, 61, 2365–2371.
[68]  Bennett, J.W.; Papa, K.E. The aflatoxigenic Aspergillus spp. Adv. Plant Pathol. 1988, 6, 265–279.
[69]  Bennett, J.W.; Silverstein, R.B.; Kruger, S.J. Isolation and characterization of two nonaflatoxigenic classes of morphological variants of Aspergillus parasiticus. J. Am. Oil Chem. Soc. 1981, 58, A952–A955, doi:10.1007/BF02679298.
[70]  Bhatnagar, D.; Ehrlich, K.C.; Cleveland, T.E. Oxidation-Reduction Reactions in Biosynthesis of Secondary Metabolites. In Mycotoxins in Ecological Systems; Bhatnagar, D., Lillehoj, E.B., Arora, D.K., Eds.; Marcel Dekker: New York, NY, USA, 1992; Volume 10, pp. 255–285.
[71]  Chang, P.K. Lack of interaction between AFLR and AFLJ contributes to nonaflatoxigenicity of Aspergillus sojae. J. Biotechnol. 2004, 107, 245–253, doi:10.1016/j.jbiotec.2003.10.012.
[72]  Chang, P.K.; Cary, J.W.; Bhatnagar, D.; Cleveland, T.E.; Bennett, J.W.; Linz, J.E.; Woloshuk, C.P.; Payne, G.A. Cloning of the Aspergillus parasiticus apa-2 gene associated with the regulation of aflatoxin biosynthesis. Appl. Environ. Microbiol. 1993, 59, 3273–3279.
[73]  Chang, P.K.; Cary, J.W.; Yu, J.; Bhatnagar, D.; Cleveland, T.E. The Aspergillus parasiticus polyketide synthase gene pksA, a homolog of Aspergillus nidulans wA, is required for aflatoxin B1 biosynthesis. Mol. Gen. Genet. 1995, 248, 270–277, doi:10.1007/BF02191593.
[74]  Chang, P.K.; Yu, J.; Bhatnagar, D.; Cleveland, T.E. The carboxy-terminal portion of the aflatoxin pathway regulatory protein AFLR of Aspergillus parasiticus activates GAL1: lacZ gene expression in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1999, 65, 2508–2512.
[75]  Cleveland, T.E.; Lax, A.R.; Lee, L.S.; Bhatnagar, D. Appearance of enzyme activities catalyzing conversion of sterigmatocystin to aflatoxin B1 in late-growth-phase Aspergillus parasiticus cultures. Appl. Environ. Microbiol. 1987, 53, 1711–1713.
[76]  Crawford, J.M.; Thomas, P.M.; Scheerer, J.R.; Vagstad, A.L.; Kelleher, N.L.; Townsend, C.A. Deconstruction of iterative multidomain polyketide synthase function. Science 2008, 320, 243–246.
[77]  Ehrlich, K.C.; Cary, J.W.; Montalbano, B.G. Characterization of the promoter for the gene encoding the aflatoxin biosynthetic pathway regulatory protein AFLR. Biochim. Biophys. Acta 1999, 1444, 412–417, doi:10.1016/S0167-4781(99)00022-6.
[78]  Keller, N.P.; Dischinger, H.C., Jr.; Bhatnagar, D.; Cleveland, T.E.; Ullah, A.H. Purification of a 40-kilodalton methyltransferase active in the aflatoxin biosynthetic pathway. Appl. Environ. Microbiol. 1993, 59, 479–484.
[79]  Ehrlich, K.C.; Yu, J. Aflatoxin-Like Gene Clusters and How They Evolved. In Mycotoxins in Food, Feed, and Bioweapons; Varma, A.K., Rai, M.K., Eds.; Springer Verlag: Heidelberg, Germany, 2009; pp. 65–76.
[80]  Ehrlich, K.C. Predicted roles of uncharacterized clustered genes in aflatoxin biosynthesis. Toxins 2009, 1, 37–58, doi:10.3390/toxins1010037.
[81]  Yu, J.; Chang, P.K.; Ehrlich, K.C.; Cary, J.W.; Bhatnagar, D.; Cleveland, T.E.; Payne, G.A.; Linz, J.E.; Woloshuk, C.P.; Bennett, J.W. Clustered pathway genes in aflatoxin biosynthesis. Appl. Environ. Microbiol. 2004, 70, 1253–1262.
[82]  Chang, P.K.; Horn, B.W.; Dorner, J.W. Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates. Fungal Genet. Biol. 2005, 42, 914–923, doi:10.1016/j.fgb.2005.07.004.
[83]  Wilson, D.M. Analytical methods for aflatoxins in corn and peanuts. Arch. Environ. Contam. Toxicol. 1989, 18, 308–314.
[84]  Trail, F.; Mahanti, N.; Rarick, M.; Mehigh, R.; Liang, S.H.; Zhou, R.; Linz, J.E. Physical and transcriptional map of an aflatoxin gene cluster in Aspergillus parasiticus and functional disruption of a gene involved early in the aflatoxin pathway. Appl. Environ. Microbiol. 1995, 61, 2665–2673.
[85]  Trail, F.; Mahanti, N.; Linz, J. Molecular biology of aflatoxin biosynthesis. Microbiol. 1995, 141, 755–765, doi:10.1099/13500872-141-4-755.
[86]  Townsend, C.A. Progress towards a biosynthetic rationale of the aflatoxin pathway. Pure Appl. Chem. 1997, 58, 227–238, doi:10.1351/pac198658020227.
[87]  Yu, J.; Bhatnagar, D.; Cleveland, T.E. Completed sequence of aflatoxin pathway gene cluster in Aspergillus parasiticus. FEBS Lett. 2004, 564, 126–130, doi:10.1016/S0014-5793(04)00327-8.
[88]  Bennett, J.W. Loss of norsolorinic acid and aflatoxin production by a mutant of Aspergillus parasiticus. J. Gen. Microbiol. 1981, 124, 429–432.
[89]  Watanabe, C.M.; Wilson, D.; Linz, J.E.; Townsend, C.A. Demonstration of the catalytic roles and evidence for the physical association of type I fatty acid synthases and a polyketide synthase in the biosynthesis of aflatoxin B1. Chem. Biol. 1996, 3, 463–469, doi:10.1016/S1074-5521(96)90094-0.
[90]  Brown, D.W.; Yu, J.H.; Kelkar, H.S.; Fernandes, M.; Nesbitt, T.C.; Keller, N.P.; Adams, T.H.; Leonard, T.J. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 1996, 93, 1418–1422.
[91]  Watanabe, C.M.; Townsend, C.A. Initial characterization of a type I fatty acid synthase and polyketide synthase multienzyme complex NorS in the biosynthesis of aflatoxin B1. Chem. Biol. 2002, 9, 981–988, doi:10.1016/S1074-5521(02)00213-2.
[92]  Crawford, J.M.; Dancy, B.C.; Hill, E.A.; Udwary, D.W.; Townsend, C.A. Identification of a starter unit acyl-carrier protein transacylase domain in an iterative type I polyketide synthase. Proc. Natl. Acad. Sci. USA 2006, 103, 16728–16733.
[93]  Crawford, J.M.; Vagstad, A.L.; Ehrlich, K.C.; Townsend, C.A. Starter unit specificity directs genome mining of polyketide synthase pathways in fungi. Bioorg. Chem. 2008, 36, 16–22, doi:10.1016/j.bioorg.2007.11.002.
[94]  Yabe, K.; Nakajima, H. Enzyme reactions and genes in aflatoxin biosynthesis. Appl. Microbiol. Biotechnol. 2004, 64, 745–755, doi:10.1007/s00253-004-1566-x.
[95]  Brown, D.W.; Adams, T.H.; Keller, N.P. Aspergillus has distinct fatty acid synthases for primary and secondary metabolism. Proc. Natl. Acad. Sci. USA 1996, 93, 14873–14877, doi:10.1073/pnas.93.25.14873.
[96]  Mahanti, N.; Bhatnagar, D.; Cary, J.W.; Joubran, J.; Linz, J.E. Structure and function of fas-1A, a gene encoding a putative fatty acid synthetase directly involved in aflatoxin biosynthesis in Aspergillus parasiticus. Appl. Environ. Microbiol. 1996, 62, 191–195.
[97]  Payne, G.A. Process of Contamination by Aflatoxin-Producing Fungi and Their Impacts on Crops. In Mycotoxins in Agriculture and Food Safety; Sinha, K.K., Bhatnagar, D., Eds.; Marcel Dekker: New York, NY, USA, 1998; pp. 279–306.
[98]  Watanabe, C.M.; Townsend, C.A. Incorporation of molecular oxygen in aflatoxin B1 biosynthesis. J. Org. Chem. 1996, 61, 1990–1993, doi:10.1021/jo952056v.
[99]  Hitchman, T.S.; Schmidt, E.W.; Trail, F.; Rarick, M.D.; Linz, J.E.; Townsend, C.A. Hexanoate synthase, a specialized type I fatty acid synthase in aflatoxin B1 biosynthesis. Bioorg. Chem. 2001, 29, 293–307, doi:10.1006/bioo.2001.1216.
[100]  Crawford, J.M.; Vagstad, A.L.; Whitworth, K.P.; Ehrlich, K.C.; Townsend, C.A. Synthetic strategy of nonreducing Iterative polyketide synthases and the origin of the classical “Starter-Unit Effect”. Chembiochem 2008, 9, 1019–1023, doi:10.1002/cbic.200700702.
[101]  Bennett, J.W.; Bhatnagar, D.; Chang, P.K. The molecular genetics of aflatoxin biosynthesis. FEMS Symp. 1994, 51–58.
[102]  Papa, G. Norsolorinic acid mutant of Aspergillus flavus. J. Gen. Microbiol. 1982, 128, 1345–1348.
[103]  Lee, L.S.; Bennett, J.W.; Goldblatt, L.A.; Lundin, R.E. Norsolorinic acid from a mutant strain of Aspergillus parasiticus. J. Am. Oil Chem. Soc. 1971, 48, 93–94, doi:10.1007/BF02635696.
[104]  Detroy, R.W.; Freer, S.; Ciegler, A. Aflatoxin and anthraquinone biosynthesis by nitrosoguanidine-derived mutants of Aspergillus parasiticus. Can. J. Microbiol. 1973, 19, 1373–1378, doi:10.1139/m73-221.
[105]  Chang, P.K.; Skory, C.D.; Linz, J.E. Cloning of a gene associated with aflatoxin B1 biosynthesis in Aspergillus parasiticus. Curr. Genet. 1992, 21, 231–233, doi:10.1007/BF00336846.
[106]  Zhou, R.; Linz, J.E. Enzymatic function of the nor-1 protein in aflatoxin biosynthesis in Aspergillus parasiticus. Appl. Environ. Microbiol. 1999, 65, 5639–5641.
[107]  Trail, F.; Chang, P.-K.; Cary, J.; Linz, J.E. Structural and functional analysis of the nor-1 gene involved in the biosynthesis of aflatoxins by Aspergillus parasiticus. Appl. Environ. Microbiol. 1994, 60, 4078–4085.
[108]  Cary, J.W.; Wright, M.; Bhatnagar, D.; Lee, R.; Chu, F.S. Molecular characterization of an Aspergillus parasiticus dehydrogenase gene, norA, located on the aflatoxin biosynthesis gene cluste. Appl. Environ. Microbiol. 1996, 62, 360–366.
[109]  Bennett, J.W.; Lee, L.S.; Shoss, S.M.; Boudreaux, G.H. Identification of averantin as an aflatoxin B1 precursor: Placement in the biosynthetic pathway. Appl. Environ. Microbiol. 1980, 39, 835–839.
[110]  McCormick, S.P.; Bhatnagar, D.; Lee, L.S. Averufanin is an aflatoxin B1 precursor between averantin and averufin in the biosynthetic pathway. Appl. Environ. Microbiol. 1987, 53, 14–16.
[111]  Yabe, K.; Ando, Y.; Hamasaki, T. A metabolic grid among versiconal hemiacetal acetate, versiconol acetate, versiconol and versiconal during aflatoxin biosynthesis. J. Gen. Microbiol. 1991, 137, 2469–2475, doi:10.1099/00221287-137-10-2469.
[112]  Yabe, K.; Nakamura, Y.; Nakajima, H.; Ando, Y.; Hamasaki, T. Enzymatic conversion of norsolorinic acid to averufin in aflatoxin biosynthesis. Appl. Environ. Microbiol. 1991, 57, 1340–1345.
[113]  Yu, J.; Chang, P.K.; Cary, J.W.; Bhatnagar, D.; Cleveland, T.E. avnA, a gene encoding a cytochrome P-450 monooxygenase, is involved in the conversion of averantin to averufin in aflatoxin biosynthesis in Aspergillus parasiticus. Appl. Environ. Microbiol. 1997, 63, 1349–1356.
[114]  Hsieh, D.P. Inhibition of aflatoxin biosynthesis of dichlorvos. J. Agric. Food Chem. 1973, 21, 468–470, doi:10.1021/jf60187a035.
[115]  Singh, R.; Hsieh, D.P. Aflatoxin biosynthetic pathway: Elucidation by using blocked mutants of Aspergillus parasiticus. Arch. Biochem. Biophys. 1977, 178, 285–292, doi:10.1016/0003-9861(77)90193-X.
[116]  Fitzell, D.L.; Hsieh, D.P.; Yao, R.C.; la Mar, G.N. Biosynthesis of averufin from acetate by Aspergillus parasiticus. J. Agric. Food Chem. 1975, 23, 442–444, doi:10.1021/jf60199a039.
[117]  Lin, M.T.; Hsieh, D.P.; Yao, R.C.; Donkersloot, J.A. Conversion of averufin into aflatoxins by Aspergillus parasiticus. Biochemistry 1973, 12, 5167–5171, doi:10.1021/bi00749a023.
[118]  Lin, M.T.; Hsieh, D.P. Averufin in the biosynthesis of aflatoxin B. J. Am Chem. Soc. 1973, 95, 1668–1669, doi:10.1021/ja00786a056.
[119]  Keller, N.P.; Watanabe, C.M.; Kelkar, H.S.; Adams, T.H.; Townsend, C.A. Requirement of monooxygenase-mediated steps for sterigmatocystin biosynthesis by Aspergillus nidulans. Appl. Environ. Microbiol. 2000, 66, 359–362.
[120]  Sakuno, E.; Yabe, K.; Nakajima, H. Involvement of two cytosolic enzymes and a novel intermediate, 5'-oxoaverantin, in the pathway from 5'-hydroxyaverantin to averufin in aflatoxin biosynthesis. Appl. Environ. Microbiol. 2003, 69, 6418–6426, doi:10.1128/AEM.69.11.6418-6426.2003.
[121]  Chang, P.K.; Yu, J.; Ehrlich, K.C.; Boue, S.M.; Montalbano, B.G.; Bhatnagar, D.; Cleveland, T.E. adhA in Aspergillus parasiticus is involved in conversion of 5'-hydroxyaverantin to averufin. Appl. Environ. Microbiol. 2000, 66, 4715–4719.
[122]  Ehrlich, K.C.; Chang, P.-K.; Scharfenstein, J.S.L.; Cary, J.W.; Crawford, J.M.; Townsend, C.A. Absence of the aflatoxin biosynthesis gene, norA, allows accumulation of deoxyaflatoxin B1 in Aspergillus flavus cultures. FEMS Microbiol. Lett. 2010, 305, 65–70, doi:10.1111/j.1574-6968.2010.01914.x.
[123]  Yu, J.; Woloshuk, C.P.; Bhatnagar, D.; Cleveland, T.E. Cloning and characterization of avfA and omtB genes involved in aflatoxin biosynthesis in three Aspergillus species. Gene 2000, 248, 157–167, doi:10.1016/S0378-1119(00)00126-8.
[124]  Yao, R.C.; Hsieh, D.P. Step of dichlorvos inhibition in the pathway of aflatoxin biosynthesis. Appl. Microbiol. 1974, 28, 52–57.
[125]  Hsieh, D.P.; Wan, C.C.; Billington, J.A. A versiconal hemiacetal acetate converting enzyme in aflatoxin biosynthesis. Mycopathologia 1989, 107, 121–126, doi:10.1007/BF00707548.
[126]  Kusumoto, K.I.; Hsieh, D.P.H. Purification and characterization of the esterases involved in aflatoxin biosynthesis in Aspergillus parasiticus. Can. J. Microbiol. 1996, 42, 804–810, doi:10.1139/m96-101.
[127]  Schroeder, H.W.; Cole, R.J.; Grigsby, R.D.; Hein, H., Jr. Inhibition of aflatoxin production and tentative identification of an aflatoxin intermediate “versiconal acetate” from treatment with dichlorvos. Appl. Microbiol. 1974, 27, 394–399.
[128]  Fitzell, D.L.; Singh, R.; Hsieh, D.P.; Motell, E.L. Nuclear magnetic resonance identification of versiconal hemiacetal acetate as an intermediate in aflatoxin biosynthesis. J. Agric. Food. Chem. 1977, 25, 1193–1197, doi:10.1021/jf60213a024.
[129]  Yu, J.; Chang, P.K.; Bhatnagar, D.; Cleveland, T.E. Cloning and functional expression of an esterase gene in Aspergillus parasitcus. Mycopathologia 2002, 156, 227–234.
[130]  Chang, P.K.; Yabe, K.; Yu, J. The Aspergillus parasiticus estA-encoded esterase converts versiconal hemiacetal acetate to versiconal and versiconol acetate to versiconol in aflatoxin biosynthesis. Appl. Environ. Microbiol. 2004, 70, 3593–3599, doi:10.1128/AEM.70.6.3593-3599.2004.
[131]  Yabe, K.; Chihaya, N.; Hamamatsu, S.; Sakuno, E.; Hamasaki, T.; Nakajima, H.; Bennett, J.W. Enzymatic conversion of averufin to hydroxyversicolorone and elucidation of a novel metabolic grid involved in aflatoxin biosynthesis. Appl. Environ. Microbiol. 2003, 69, 66–73, doi:10.1128/AEM.69.1.66-73.2003.
[132]  Lin, B.K.; Anderson, J.A. Purification and properties of versiconal cyclase from Aspergillus parasiticus. Arch. Biochem. Biophys. 1992, 293, 67–70, doi:10.1016/0003-9861(92)90366-5.
[133]  McGuire, S.M.; Silva, J.C.; Casillas, E.G.; Townsend, C.A. Purification and characterization of versicolorin B synthase from Aspergillus parasiticus. Catalysis of the stereodifferentiating cyclization in aflatoxin biosynthesis essential to DNA interaction. Biochemistry 1996, 35, 11470–11486.
[134]  Silva, J.C.; Minto, R.E.; Barry, C.E., III; Holland, K.A.; Townsend, C.A. Isolation and characterization of the versicolorin B synthase gene from Aspergillus parasiticus. Expansion of the aflatoxin B1 biosynthetic gene cluster. J. Biol. Chem. 1996, 271, 13600–13608.
[135]  Silva, J.C.; Townsend, C.A. Heterologous expression, isolation, and characterization of versicolorin B synthase from Aspergillus parasiticu. A key enzyme in the aflatoxin B1 biosynthetic pathway. J. Biol. Chem. 1997, 272, 804–813.
[136]  Zuckerman, A.J.; Rees, K.R.; Inman, D.; Petts, V. Site of action of aflatoxin on human liver cells in culture. Nature 1967, 214, 814–815.
[137]  Yabe, K.; Matsuyama, Y.; Ando, Y.; Nakajima, H.; Hamasaki, T. Stereochemistry during aflatoxin biosynthesis: Conversion of norsolorinic acid to averufin. Appl. Environ. Microbiol. 1993, 59, 2486–2492.
[138]  Kelkar, H.S.; Skloss, T.W.; Haw, J.F.; Keller, N.P.; Adams, T.H. Aspergillus nidulans stcL encodes a putative cytochrome P-450 monooxygenase required for bisfuran desaturation during aflatoxin/sterigmatocystin biosynthesis. J. Biol. Chem. 1997, 272, 1589–1594.
[139]  Henry, K.M.; Townsend, C.A. Ordering the reductive and cytochrome P450 oxidative steps in demethylsterigmatocystin formation yields general insights into the biosynthesis of aflatoxin and related fungal metabolites. J. Am. Chem. Soc. 2005, 127, 3724–3733, doi:10.1021/ja0455188.
[140]  Skory, C.D.; Chang, P.K.; Cary, J.; Linz, J.E. Isolation and characterization of a gene from Aspergillus parasiticus associated with the conversion of versicolorin A to sterigmatocystin in aflatoxin biosynthesis. Appl. Environ. Microbiol. 1992, 58, 3527–3537.
[141]  Keller, N.P.; Kantz, N.J.; Adams, T.H. Aspergillus nidulans verA is required for production of the mycotoxin sterigmatocystin. Appl. Environ. Microbiol. 1994, 60, 1444–1450.
[142]  Keller, N.P.; Segnar, S.; Bhatnagar, D.; Adams, T.H. stcS, a putative P-450 monooxygenase, is required for the conversion of versicolorin A to sterigmatocystin in Aspergillus nidulans. Appl. Environ. Microbiol. 1995, 61, 3628–3632.
[143]  Yabe, K.; Ando, Y.; Hashimoto, J.; Hamasaki, T. Two distinct O-methyltransferases in aflatoxin biosynthesis. Appl. Environ. Microbiol. 1989, 55, 2172–2177.
[144]  Yabe, K.; Matsushima, K.; Koyama, T.; Hamasaki, T. Purification and characterization of O-methyltransferase I involved in conversion of demethylsterigmatocystin to sterigmatocystin and of dihydrodemethylsterigmatocystin to dihydrosterigmatocystin during aflatoxin biosynthesis. Appl. Environ. Microbiol. 1998, 64, 166–171.
[145]  Yabe, K.; Nakamura, M.; Hamasaki, T. Enzymatic formation of G-group aflatoxins and biosynthetic relationship between G- and B-group aflatoxins. Appl. Environ. Microbiol. 1999, 65, 3867–3872.
[146]  Motomura, M.; Chihaya, N.; Shinozawa, T.; Hamasaki, T.; Yabe, K. Cloning and characterization of the O-methyltransferase I gene (dmtA) from Aspergillus parasiticus associated with the conversions of demethylsterigmatocystin to sterigmatocystin and dihydrodemethylsterigmatocystin to dihydrosterigmatocystin in aflatoxin biosynthesis. Appl. Environ. Microbiol. 1999, 65, 4987–4994.
[147]  Kelkar, H.S.; Keller, N.P.; Adams, T.H. Aspergillus nidulans stcP encodes an O-methyltransferase that is required for sterigmatocystin biosynthesis. Appl. Environ. Microbiol. 1996, 62, 4296–4298.
[148]  Yu, J.; Cary, J.W.; Bhatnagar, D.; Cleveland, T.E.; Keller, N.P.; Chu, F.S. Cloning and characterization of a cDNA from Aspergillus parasiticus encoding an O-methyltransferase involved in aflatoxin biosynthesis. Appl. Environ. Microbiol. 1993, 59, 3564–3571.
[149]  Yu, J.; Chang, P.K.; Payne, G.A.; Cary, J.W.; Bhatnagar, D.; Cleveland, T.E. Comparison of the omtA genes encoding O-methyltransferases involved in aflatoxin biosynthesis from Aspergillus parasiticus and A. flavus. Gene 1995, 163, 121–125, doi:10.1016/0378-1119(95)00397-O.
[150]  Klich, M.A.; Yu, J.; Chang, P.K.; Mullaney, E.J.; Bhatnagar, D.; Cleveland, T.E. Hybridization of genes involved in aflatoxin biosynthesis to DNA of aflatoxigenic and non-aflatoxigenic aspergilli. Appl. Microbiol. Biotechnol. 1995, 44, 439–443, doi:10.1007/BF00169941.
[151]  Yabe, K.; Ando, Y.; Hamasaki, T. Biosynthetic relationship among aflatoxins B1, B2, G1, and G2. Appl. Environ. Microbiol. 1988, 54, 2101–2106.
[152]  Prieto, R.; Yousibova, G.L.; Woloshuk, C.P. Identification of aflatoxin biosynthesis genes by genetic complementation in an Aspergillus flavus mutant lacking the aflatoxin gene cluster. Appl. Environ. Microbiol. 1996, 62, 3567–3571.
[153]  Prieto, R.; Woloshuk, C.P. ord1, an oxidoreductase gene responsible for conversion of O-methylsterigmatocystin to aflatoxin in Aspergillus flavus. Appl. Environ. Microbiol. 1997, 63, 1661–1666.
[154]  Yu, J.; Chang, P.K.; Ehrlich, K.C.; Cary, J.W.; Montalbano, B.; Dyer, J.M.; Bhatnagar, D.; Cleveland, T.E. Characterization of the critical amino acids of an Aspergillus parasiticus cytochrome P-450 monooxygenase encoded by ordA that is involved in the biosynthesis of aflatoxins B1, G1, B2, and G2. Appl. Environ. Microbiol. 1998, 64, 4834–4841.
[155]  Ehrlich, K.C.; Chang, P.K.; Yu, J.; Cotty, P.J. Aflatoxin biosynthesis cluster gene cypA is required for G aflatoxin formation. Appl. Environ. Microbiol. 2004, 70, 6518–6524, doi:10.1128/AEM.70.11.6518-6524.2004.
[156]  Price, M.S.; Yu, J.; Nierman, W.C.; Kim, H.S.; Pritchard, B.; Jacobus, C.A.; Bhatnagar, D.; Cleveland, T.E.; Payne, G.A. The aflatoxin pathway regulator AflR induces gene transcription inside and outside of the aflatoxin biosynthetic cluster. FEMS Microbiol. Lett. 2006, 255, 275–279, doi:10.1111/j.1574-6968.2005.00084.x.
[157]  Ehrlich, K.C.; Chang, P.-K.; Yu, J.; Cary, J.W.; Bhatnagar, D. Control of Aflatoxin Biosynthesis in Aspergilli. In Aflatoxins—Biochemistry and Molecular Biology; Guevara-Gonzalez, R.G., Ed.; Intech: Rijeka, Croatia, 2011; pp. 21–40.
[158]  Yu, J.; Chang, P.K.; Bhatnagar, D.; Cleveland, T.E. Cloning of a sugar utilization gene cluster in Aspergillus parasiticus. Biochim. Biophys. Acta 2000, 1493, 211–214, doi:10.1016/S0167-4781(00)00148-2.
[159]  Cai, J.; Zeng, H.; Shima, Y.; Hatabayashi, H.; Nakagawa, H.; Ito, Y.; Adachi, Y.; Nakajima, H.; Yabe, K. Involvement of the nadA gene in formation of G-group aflatoxins in Aspergillus parasiticus. Fungal Genet. Biol. 2008, 45, 1081–1093, doi:10.1016/j.fgb.2008.03.003.
[160]  Ehrlich, K.C.; Scharfenstein, J.S.L.; Montalbano, B.G.; Chang, P.-K. Are the genes nadA and norB involved in formation of aflatoxin G1. Int. J. Mol. Sci. 2008, 9, 1717–1729, doi:10.3390/ijms9091717.
[161]  Rice, D.W.; Hsieh, D.P. Aflatoxin M1: In vitro preparation and comparative in vitro metabolism versus aflatoxin B1 in the rat and mouse. Res. Commun. Chem. Pathol. Pharmacol. 1982, 35, 467–490.
[162]  Garrido, N.S.; Iha, M.H.; Santos Ortolani, M.R.; Duarte Fávaro, R.M. Occurrence of aflatoxin M1 and aflatoxin M2 in milk commercialized in Ribeir?o Preto-SP, Brazil. J. Food Addit. Contam. 2003, 20, 70–73, doi:10.1080/0265203021000035371.
[163]  Hsieh, D.P.; Beltran, L.M.; Fukayama, M.Y.; Rice, D.W.; Wong, J.J. Production and isolation of aflatoxin M1 for toxicological studies. J. Assoc. Off. Anal. Chem. 1986, 69, 510–512.
[164]  Hsieh, D.P.; Cullen, J.M.; Hsieh, L.S.; Shao, Y.; Ruebner, B.H. Cancer risks posed by aflatoxin M1. Princess Takamatsu Symp. 1985, 16, 57–65.
[165]  Huang, J.H.; Hsieh, D.P. Comparative study of aflatoxins M1 and B1 production in solid-state and shaking liquid cultures. Proc. Natl. Sci. Counc. Repub. China 1988, 12, 34–42.
[166]  Yabe, K.; Chihaya, N.; Hatabayashi, H.; Kito, M.; Hoshino, S.; Zeng, H.; Cai, J.; Nakajima, H. Production of M-/GM-group aflatoxins catalyzed by the OrdA enzyme in aflatoxin biosynthesis. Fungal Genet. Biol. 2012, 49, 744–754, doi:10.1016/j.fgb.2012.06.011.
[167]  Woloshuk, C.P.; Prieto, R. Genetic organization and function of the aflatoxin B1 biosynthetic genes. FEMS Microbiol. Lett. 1998, 160, 169–176, doi:10.1111/j.1574-6968.1998.tb12907.x.
[168]  Meyers, D.M.; Obrian, G.; Du, W.L.; Bhatnagar, D.; Payne, G.A. Characterization of aflJ, a gene required for conversion of pathway intermediates to aflatoxin. Appl. Environ. Microbiol. 1998, 64, 3713–3717.
[169]  Bok, J.-W.; Keller, N.P. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot. Cell 2004, 3, 527–535, doi:10.1128/EC.3.2.527-535.2004.
[170]  Perrin, R.M.; Fedorova, N.D.; Bok, J.W.; Cramer, R.A.; Wortman, J.R.; Kim, H.S.; Nierman, W.C.; Keller, N.P. Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog. 2007, 3, e50, doi:10.1371/journal.ppat.0030050.
[171]  Kato, N.; Brooks, W.; Calvo, A.M. The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryot. Cell 2003, 2, 1178–1186, doi:10.1128/EC.2.6.1178-1186.2003.
[172]  Calvo, A.M.; Bok, J.-W.; Brooks, W.; Keller, N.P. VeA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl. Environ. Microbiol. 2004, 70, 4733–4739, doi:10.1128/AEM.70.8.4733-4739.2004.
[173]  Chang, P.K.; Ehrlich, K.C.; Yu, J.; Bhatnagar, D.; Cleveland, T.E. Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis. Appl. Environ. Microbiol. 1995, 61, 2372–2377.
[174]  Chang, P.K.; Yu, J.; Bhatnagar, D.; Cleveland, T.E. Repressor-AFLR interaction modulates aflatoxin biosynthesis in Aspergillus parasiticus. Mycopathologia 1999, 147, 105–112, doi:10.1023/A:1007157309168.
[175]  Ehrlich, K.C.; Montalbano, B.G.; Bhatnagar, D.; Cleveland, T.E. Alteration of different domains in AFLR affects aflatoxin pathway metabolism in Aspergillus parasiticus transformants. Fungal Genet. Biol. 1998, 23, 279–287, doi:10.1006/fgbi.1998.1045.
[176]  Flaherty, J.E.; Payne, G.A. Overexpression of aflR leads to upregulation of pathway gene expression and increased aflatoxin production in Aspergillus flavus. Appl. Environ. Microbiol. 1997, 63, 3995–4000.
[177]  Payne, G.A.; Nystrom, G.J.; Bhatnagar, D.; Cleveland, T.E.; Woloshuk, C.P. Cloning of the afl-2 gene involved in aflatoxin biosynthesis from Aspergillus flavus. Appl. Environ. Microbiol. 1993, 59, 156–162.
[178]  Woloshuk, C.P.; Foutz, K.R.; Brewer, J.F.; Bhatnagar, D.; Cleveland, T.E.; Payne, G.A. Molecular characterization of aflR, a regulatory locus for aflatoxin biosynthesis. Appl. Environ. Microbiol. 1994, 60, 2408–2414.
[179]  Yu, J.H.; Wieser, J.; Adams, T.H. The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J. 1996, 15, 5184–5190.
[180]  Yu, J.H.; Butchko, R.A.; Fernandes, M.; Keller, N.P.; Leonard, T.J.; Adams, T.H. Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus. Curr. Genet. 1996, 29, 549–555, doi:10.1007/BF02426959.
[181]  Ehrlich, K.C.; Montalbano, B.G.; Cary, J.W. Binding of the C6-zinc cluster protein, AFLR, to the promoters of aflatoxin pathway biosynthesis genes in Aspergillus parasiticu. Gene 1999, 230, 249–257, doi:10.1016/S0378-1119(99)00075-X.
[182]  Cary, J.W.; Ehrlich, K.C.; Wright, M.; Chang, P.K.; Bhatnagar, D. Generation of aflR disruption mutants of Aspergillus parasiticus. Appl. Microbiol. Biotechnol. 2000, 53, 680–684, doi:10.1007/s002530000319.
[183]  Wilkinson, J.R.; Yu, J.; Bland, J.M.; Nierman, W.C.; Bhatnagar, D.; Cleveland, T.E. Amino acid supplementation reveals differential regulation of aflatoxin biosynthesis in Aspergillus flavus NRRL 3357 and Aspergillus parasiticus SRRC 143. Appl. Microbiol. Biotechnol. 2007, 74, 1308–1319, doi:10.1007/s00253-006-0768-9.
[184]  Wilkinson, J.R.; Yu, J.; Abbas, H.K.; Scheffler, B.E.; Kim, H.S.; Nierman, W.C.; Bhatnagar, D.; Cleveland, T.E. Aflatoxin formation and gene expression in response to carbon source media shift in Aspergillus parasiticus. J. Food Addit. Contam. 2007, 24, 1051–1060, doi:10.1080/02652030701579454.
[185]  Abnet, C.C. Carcinogenic food contaminants. Cancer Invest. 2007, 25, 189–196, doi:10.1080/07357900701208733.
[186]  Du, W.; Obrian, G.R.; Payne, G.A. Function and regulation of aflJ in the accumulation of aflatoxin early pathway intermediate in Aspergillus flavus. J. Food Addit. Contam. 2007, 24, 1043–1050, doi:10.1080/02652030701513826.
[187]  Bouhired, S.; Weber, M.; Kempf-Sontag, A.; Keller, N.P.; Hoffmeister, D. Accurate prediction of the Aspergillus nidulans terrequinone gene cluster boundaries using the transcriptional regulator LaeA. Fungal Genet. Biol. 2007, 44, 1134–1145, doi:10.1016/j.fgb.2006.12.010.
[188]  Sugui, J.A.; Pardo, J.; Chang, Y.C.; Zarember, K.A.; Nardone, G.; Galvez, E.M.; Mullbacher, A.; Gallin, J.I.; Simon, M.M.; Kwon-Chung, K.J. Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryot. Cell 2007, 6, 1562–1569, doi:10.1128/EC.00141-07.
[189]  Bok, J.W.; Noordermeer, D.; Kale, S.P.; Keller, N.P. Secondary metabolic gene cluster silencing in Aspergillus nidulans. Mol. Microbiol. 2006, 61, 1636–1645, doi:10.1111/j.1365-2958.2006.05330.x.
[190]  Kale, S.P.; Cary, J.W.; Hollis, N.; Wilkinson, J.R.; Bhatnagar, D.; Yu, J.; Cleveland, T.E.; Bennett, J.W. Analysis of aflatoxin regulatory factors in serial transfer-induced non-aflatoxigenic Aspergillus parasiticus. J. Food Addit. Contam. 2007, 24, 1061–1069, doi:10.1080/02652030701564563.
[191]  Mooney, J.L.; Yager, L.N. Light is required for conidiation in Aspergillus nidulans. Genes Dev. 1990, 4, 1473–1482, doi:10.1101/gad.4.9.1473.
[192]  Duran, R.M.; Cary, J.W.; Calvo, A.M. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Appl. Microbiol. Biotechnol. 2007, 73, 1158–1168.
[193]  Stinnett, S.M.; Espeso, E.A.; Cobeno, L.; Araujo-Bazan, L.; Calvo, A.M. Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light. Mol. Microbiol. 2007, 63, 242–255, doi:10.1111/j.1365-2958.2006.05506.x.
[194]  Kale, S.P.; Cary, J.W.; Bhatnagar, D.; Bennett, J.W. Characterization of experimentally induced, nonaflatoxigenic variant strains of Aspergillus parasiticus. Appl. Environ. Microbiol. 1996, 62, 3399–3404.
[195]  Kale, S.; Bennett, J.W. Strain Instability in Filamentous Fungi. In Handbook of Applied Mycology, Mycotoxins in Ecological Systems; Bhatnagar, D., Lillehoj, E.B., Arora, D.K., Eds.; Tylor and Francis: New York, NY, USA, 1991; Volume 5, pp. 311–332.
[196]  Yabe, K.; Nakamura, H.; Ando, Y.; Terakado, N.; Nakajima, H.; Hamasaki, T. Isolation and characterization of Aspergillus parasiticus mutants with impaired aflatoxin production by a novel tip culture method. Appl. Environ. Microbiol. 1988, 54, 2096–2100.
[197]  Demain, A.L. Induction of secondary metabolism. Int. Microbiol. 1998, 1, 259–264.
[198]  Payne, G.A.; Brown, M.P. Genetics and physiology of aflatoxin biosynthesis. Annu. Rev. Phytopathol. 1998, 36, 329–362, doi:10.1146/annurev.phyto.36.1.329.
[199]  Guo, B.Z.; Holbrook, C.C.; Yu, J.; Lee, R.D.; Lynch, R.E. Application of Technology of Gene Expression in Response to Drought Stress and Elimination of Preharvest Aflatoxin Contamination. In Aflatoxin and Food Safety; Abbas, H.K., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 313–331.
[200]  Feng, G.H.; Leonard, T.J. Culture conditions control expression of the genes for aflatoxin and sterigmatocystin biosynthesis in Aspergillus parasiticus and A. nidulans. Appl. Environ. Microbiol. 1998, 64, 2275–2277.
[201]  Cuero, R.; Ouellet, T.; Yu, J.; Mogongwa, N. Metal ion enhancement of fungal growth, gene expression and aflatoxin synthesis in Aspergillus flavus: RT-PCR characterization. J. Appl. Microbiol. 2003, 94, 953–961.
[202]  Adye, J.; Mateles, R.I. Incorporation of labelled compounds into aflatoxins. Biochim. Biophys. Acta 1964, 86, 418–420, doi:10.1016/0304-4165(64)90077-7.
[203]  Bennett, J.W.; Rubin, P.L.; Lee, L.S.; Chen, P.N. Influence of trace elements and nitrogen sources on versicolorin production by a mutant strain of Aspergillus parasiticus. Mycopathologia 1979, 69, 161–166, doi:10.1007/BF00452829.
[204]  Luchese, R.H.; Harrigan, W.F. Biosynthesis of aflatoxin-the role of nutritional factors. J. Appl. Bacteriol. 1993, 74, 5–14, doi:10.1111/j.1365-2672.1993.tb02989.x.
[205]  Buchanan, R.L.; Lewis, D.F. Regulation of aflatoxin biosynthesis: Effect of glucose on activities of various glycolytic enzymes. Appl. Environ. Microbiol. 1984, 48, 306–310.
[206]  Woloshuk, C.P.; Cavaletto, J.R.; Cleveland, T.E. Inducers of aflatoxin biosynthesis from colonized maize kernels are generated by an amylase activity from Aspergillus flavus. Phytopathol 1997, 87, 164–169, doi:10.1094/PHYTO.1997.87.2.164.
[207]  Fanelli, C.; Fabbri, A.A.; Brasini, S.; de Luca, C.; Passi, S. Effect of different inhibitors of sterol biosynthesis on both fungal growth and aflatoxin production. Nat. Toxins 1995, 3, 109–113, doi:10.1002/nt.2620030209.
[208]  Fanelli, C.; Fabbri, A.A. Relationship between lipids and aflatoxin biosynthesis. Mycopathologia 1989, 107, 115–120, doi:10.1007/BF00707547.
[209]  Fanelli, C.; Fabbri, A.A.; Finotti, E.; Passi, S. Stimulation of aflatoxin biosynthesis by lipophilic epoxides. J. Gen. Microbiol. 1983, 129, 1721–1723.
[210]  Yu, J.; Mohawed, S.M.; Bhatnagar, D.; Cleveland, T.E. Substrate-induced lipase gene expression and aflatoxin production in Aspergillus parasiticus and Aspergillus flavus. J. Appl. Microbiol. 2003, 95, 1334–1342, doi:10.1046/j.1365-2672.2003.02096.x.
[211]  Davis, N.D.; Diener, U.L.; Agnihotri, V.P. Production of aflatoxins B1 and G1 in chemically defined medium. Mycopathol. Mycol. Appl. 1967, 31, 251–256, doi:10.1007/BF02053422.
[212]  Reddy, T.V.; Viswanathan, L.; Venkitasubramanian, T.A. High aflatoxin production on a chemically defined medium. Appl. Microbiol. 1971, 22, 393–396.
[213]  Reddy, T.V.; Viswanathan, L.; Venkitasubramanian, T.A. Factors affecting aflatoxin production by Aspergillus parasiticus in a chemically defined medium. J. Gen. Microbiol. 1979, 114, 409–413, doi:10.1099/00221287-114-2-409.
[214]  Kachholz, T.; Demain, A.L. Nitrate repression of averufin and aflatoxin biosynthesis Aspergillus parasiticus. J. Nat. Prod. 1983, 46, 499–506, doi:10.1021/np50028a013.
[215]  Niehaus, W.G.J.; Jiang, W.P. Nitrate induces enzymes of the mannitol cycle and suppresses versicolorin synthesis in Aspergillus parasiticus. Mycopathologia 1989, 107, 131–137, doi:10.1007/BF00707550.
[216]  Chang, P.K.; Ehrlich, K.C.; Linz, J.E.; Bhatnagar, D.; Cleveland, T.E.; Bennett, J.W. Characterization of the Aspergillus parasiticus niaD and niiA gene cluster. Curr. Genet. 1996, 30, 68–75, doi:10.1007/s002940050102.
[217]  Chang, P.K.; Yu, J.; Bhatnagar, D.; Cleveland, T.E. Characterization of the Aspergillus parasiticus major nitrogen regulatory gene, areA. Biochim. Biophys. Acta 2000, 1491, 263–266, doi:10.1016/S0167-4781(00)00004-X.
[218]  Schroeder, H.W.; Hein, H., Jr. Effect of diurnal temperature cycles on the production of aflatoxin. Appl. Microbiol. 1968, 16, 988–990.
[219]  Diener, U.L.; Davis, N.D. Limiting temperature and relative humidity for aflatoxin production by Aspergillus flavus in stored peanuts. J. Am. Oil Chem. Soc. 1970, 47, 347–351, doi:10.1007/BF02639000.
[220]  Roy, A.K.; Chourasia, H.K. Effect of temperature on aflatoxin production in Mucuna pruriens seeds. Appl. Environ. Microbiol. 1989, 55, 531–532.
[221]  OBrian, G.R.; Georgianna, D.R.; Wilkinson, J.R.; Yu, J.; Abbas, H.K.; Bhatnagar, D.; Cleveland, T.E.; Nierman, W.C.; Payne, G.A. The effect of elevated temperature on gene transcription and aflatoxin biosynthesis. Mycologia 2007, 99, 232–239, doi:10.3852/mycologia.99.2.232.
[222]  Yu, J.; Fedorova, N.D.; Montalbano, B.G.; Bhatnagar, D.; Cleveland, T.E.; Bennett, J.W.; Nierman, W.C. Tight control of mycotoxin biosynthesis gene expression in Aspergillus flavus by temperature as revealed by RNA-Seq. FEMS Microbiol. Lett. 2011, 322, 145–149, doi:10.1111/j.1574-6968.2011.02345.x.
[223]  Sanders, T.H.; Blankenship, P.D.; Cole, R.J.; Hill, R.A. Effect of soil temperature and drought on peanut pod and stem temperatures relative to Aspergillus flavus invasion and aflatoxin contamination. Mycopathologia 1984, 86, 51–54, doi:10.1007/BF00437229.
[224]  Cotty, P.J.; Jaime-Garcia, R. Influences of climate on aflatoxin producing fungi and aflatoxin contamination. Int. J. Food Microbiol. 2007, 119, 109–115, doi:10.1016/j.ijfoodmicro.2007.07.060.
[225]  Keller, N.P.; Nesbitt, C.; Sarr, B.; Phillips, T.D.; Burow, G.B. pH regulation of sterigmatocystin and aflatoxin biosynthesis in Aspergillus spp. Phytopathol 1997, 87, 643–648, doi:10.1094/PHYTO.1997.87.6.643.
[226]  Tilburn, J.; Sarkar, S.; Widdick, D.A.; Espeso, E.A.; Orejas, M.; Mungroo, J.; Penalva, M.A.; Arst, H.N., Jr. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline expressed genes by ambient pH. EMBO J. 1995, 14, 779–790.
[227]  Espeso, E.A.; Tilburn, J.; Arst, H.N., Jr.; Penalva, M.A. pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J. 1993, 12, 3947–3956.
[228]  Espeso, E.A.; Arst, H.N., Jr. On the mechanism by which alkaline pH prevents expression of an acid-expressed gene. Mol. Cell Biol. 2000, 20, 3355–3363, doi:10.1128/MCB.20.10.3355-3363.2000.
[229]  Hicks, J.K.; Yu, J.H.; Keller, N.P.; Adams, T.H. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO J. 1997, 16, 4916–4923.
[230]  Calvo, A.M.; Wilson, R.A.; Bok, J.W.; Keller, N.P. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. Rev. 2002, 66, 447–459, doi:10.1128/MMBR.66.3.447-459.2002.
[231]  Reib, J. Development of Aspergillus parasiticus and formation of aflatoxin B1 under the influence of conidiogenesis affecting compounds. Arch. Microbiol. 1982, 133, 236–238, doi:10.1007/BF00415008.
[232]  Torres, J.; Guarro, J.; Suarez, G.; Su?e, N.; Calvo, M.A.; Ramírez, C. Morphological changes in strains of Aspergillus flavus Link ex Fries and Aspergillus parasiticus Speare related with aflatoxin production. Mycopathologia 1980, 72, 171–180, doi:10.1007/BF00572660.
[233]  Guzman-de-Pena, D.; Aguirre, J.; Ruiz-Herrera, J. Correlation between the regulation of sterigmatocystin biosynthesis and asexual and sexual sporulation in Emericella nidulans. Antonie Leeuwenhoek 1998, 73, 199–205, doi:10.1023/A:1000820221945.
[234]  Yu, J.H.; Keller, N. Regulation of secondary metabolism in filamentous fungi. Annu. Rev. Phytopathol. 2005, 43, 437–458, doi:10.1146/annurev.phyto.43.040204.140214.
[235]  Shimizu, K.; Keller, N.P. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 2001, 157, 591–600.
[236]  Jayashree, T.; Praveen Rao, J.; Subramanyam, C. Regulation of aflatoxin production by Ca(2+)/calmodulin-dependent protein phosphorylation and dephosphorylation. FEMS Microbiol. Lett. 2000, 183, 215–219, doi:10.1111/j.1574-6968.2000.tb08960.x.
[237]  Mahoney, N.; Molyneux, R.J. Phytochemical inhibition of aflatoxigenicity in Aspergillus flavus by constituents of walnut (Juglans regia). J. Agric. Food Chem. 2004, 52, 1882–1889, doi:10.1021/jf030812p.
[238]  Kim, J.H.; Campbell, B.C.; Molyneux, R.; Mahoney, N.; Chan, K.L.; Yu, J.; Wilkinson, J.R.; Cary, J.; Bhatnagar, D.; Cleveland, T.E. Gene targets for fungal and mycotoxin control. Mycotoxin Res. 2006, 22, 3–8, doi:10.1007/BF02954550.
[239]  Reverberi, M.; Zjalic, S.; Racelli, A.; Fabbri, A.A.; Fanelli, C. Oxidant/antioxidant balance in Aspergillus parasiticus affects aflatoxin biosynthesis. Mycotoxin Res. 2006, 22, 39–47, doi:10.1007/BF02954556.
[240]  Jayashree, T.; Subramanyam, C. Oxidative stress as a prerequisite for aflatoxin production by Aspergillus parasiticus. Free Radic. Biol. Med. 2000, 29, 981–985, doi:10.1016/S0891-5849(00)00398-1.
[241]  Reverberi, M.; Fabbri, A.A.; Zjalic, S.; Ricelli, A.; Punelli, F.; Fanelli, C. Antioxidant enzymes stimulation in Aspergillus parasiticus by Lentinula edodes inhibits aflatoxin production. Appl. Microbiol. Biotechnol. 2005, 69, 207–215, doi:10.1007/s00253-005-1979-1.
[242]  Zeringue, H.J.; Bhatnagar, D. Neem and Control of Aflatoxin Contamination. In Neem and Environment; Singh, R.P., Chari, M.S., Raheja, A.K., Kraus, W., Eds.; Science Publishers, Inc.: Enfield, NH, USA, 1993; Volume 2, pp. 713–727.
[243]  Zeringue, H.J., Jr.; Brown, R.L.; Neucere, J.N.; Cleveland, T.E. Relationships between C6-C12 alkanal and alkenal volatile contents and resistance of maize genotypes to Aspergillus flavus and aflatoxin production. J. Agric. Food Chem. 1996, 44, 403–407, doi:10.1021/jf950313r.
[244]  Zeringue, H.J., Jr. Effects of methyl jasmonate on phytoalexin production and aflatoxin control in the developing cotton boll. Biochem. Syst. Ecol. 2002, 30, 497–503, doi:10.1016/S0305-1978(01)00125-9.
[245]  Greene-McDowelle, D.M.; Ingber, B.; Wright, M.S.; Zeringue, H.J., Jr.; Bhatnagar, D.; Cleveland, T.E. The effects of selected cotton-leaf volatiles on growth, development and aflatoxin production of Aspergillus parasiticus. Toxicon 1999, 37, 883–893, doi:10.1016/S0041-0101(98)00209-8.
[246]  Wright, M.S.; Greene-McDowelle, D.M.; Zeringue, H.J.; Bhatnagar, D.; Cleveland, T.E. Effects of volatile aldehydes from Aspergillus-resistant varieties of corn on Aspergillus parasiticus growth and aflatoxin biosynthesis. Toxicon 2000, 38, 1215–1223, doi:10.1016/S0041-0101(99)00221-4.
[247]  Wilson, R.A.; Gardner, H.W.; Keller, N.P. Differentiation of aflatoxin-producing and non-producing strains of Aspergillus flavus group. Lett. Appl. Microbiol. 2001, 33, 291–295, doi:10.1046/j.1472-765X.2001.00998.x.
[248]  Xiulan, S.; Xiaolian, Z.; Jian, T.; Zhou, J.; Chu, F.S. Preparation of gold-labeled antibody probe and its use in immunochromatography assay for detection of aflatoxin B1. Int. J. Food Microbiol. 2005, 99, 185–194, doi:10.1016/j.ijfoodmicro.2004.07.021.
[249]  Chu, F.S.; Fan, T.S.; Zhang, G.S.; Xu, Y.C.; Faust, S.; McMahon, P.L. Improved enzyme-linked immunosorbent assay for aflatoxin B1 in agricultural commodities. J. Assoc. Off. Anal. Chem. 1987, 70, 854–857.
[250]  Malloy, C.D.; Marr, J.S. Mycotoxins and public health: A review. J. Public Health Manag. Pract. 1997, 3, 61–69.
[251]  Yu, J.; Cleveland, T.E. Aspergillus flavus Genomics for Discovering Genes Involved in Aflatoxin Biosynthesis. In Polyketides Biosynthesis, Biological Activity, and Genetic Engineering; Rimando, A.M., Baerson, S.R., Eds.; American Chemical Society: Washington, DC, USA, 2007; Volume 955, pp. 246–260.
[252]  Yu, J.; Cleveland, T.E.; Nierman, W.C.; Bennett, J.W. Aspergillus flavus genomics: Gateway to human and animal health, food safety, and crop resistance to diseases. Rev. Iberoam. Micol. 2005, 22, 194–202, doi:10.1016/S1130-1406(05)70043-7.
[253]  Cleveland, T.E.; Yu, J.; Bhatnagar, D.; Chen, Z.-Y.; Brown, R.; Chang, P.K.; Cary, J.W. Progress in Elucidating the Molecular Basis of the Host Plant-Aspergillus flavus Interaction: A Basis for Devising Strategies to Reduce Aflatoxin Contamination in Crops. In Aflatoxin and Food Safety; Abbas, H.K., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 167–193.
[254]  Cleveland, T.E.; Cary, J.W.; Brown, R.L.; Bhatnagar, D.; Yu, J.; Chang, P.K.; Chaln, C.A.; Rajasekaran, K. Use of biotechnology to eliminate aflatoxin in preharvest crops. Bull. Inst. Compr. Agric. Sci. Kinki Univ. 1997, 5, 75–90.
[255]  Lillehoj, E.B.; Wall, J.H. Decontamination of Aflatoxin-Contaminated Maize Grain. In Proceedings of US Universities-CIMMYT Maize Aflatoxin Workshop, El Batan, Mexico, April 1987; pp. 260–279.
[256]  Cotty, P.J.; Bayman, D.S.; Egel, D.S.; Elias, K.S. Agriculture, Aflatoxins and Aspergillus. In The Genus Aspergillus; Powell, K., Ed.; Plenum Press: New York, NY, USA, 1994; pp. 1–27.
[257]  Tubajika, K.M.; Damann, K.E. Sources of resistance to aflatoxin production in maize. J. Agric. Food Chem. 2001, 49, 2652–2656, doi:10.1021/jf001333i.
[258]  Brown, R.L.; Chen, Z.Y.; Cleveland, T.E.; Russin, J.S. Advances in the development of host resistance in corn to aflatoxin contamination by Aspergillus flavus. Phytopathology 1999, 89, 113–117, doi:10.1094/PHYTO.1999.89.2.113.
[259]  Chen, Z.Y.; Brown, R.L.; Damann, K.E.; Cleveland, T.E. PR10 expression in maize and its effect on host resistance against Aspergillus flavus infection and aflatoxin production. Mol. Plant Pathol. 2010, 11, 69–81, doi:10.1111/j.1364-3703.2009.00574.x.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133