全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Toxins  2012 

Comparative Cellular Toxicity of Hydrophilic and Hydrophobic Microcystins on Caco-2 Cells

DOI: 10.3390/toxins4111008

Keywords: cyanobacteria, toxins, microcystin, MC-LW, MC-LF

Full-Text   Cite this paper   Add to My Lib

Abstract:

Microcystins (MC), cyanobacterial peptide hepatotoxins, comprise more than 100 different variants. They are rather polar molecules but some variants contain hydrophobic amino acid residues in the highly variable parts of the molecule. In MC-LF and MC-LW, the more hydrophobic phenylalanine (F) and tryptophan (W), respectively, have replaced arginine (R) in MC-LR. Depending on the structure, microcystins are expected to have different in vivo toxicity and bioavailability, but only a few studies have considered the toxic properties of the more hydrophobic variants. The present study shows that MC-LF and MC-LW have more pronounced cytotoxic effects on Caco-2 cells as compared to those of MC-LR. Treatment of Caco-2 cells with MC-LW and especially MC-LF showed clear apoptotic features including shrinkage and blebbing, and the cell–cell adhesion was lost. An obvious reduction of cell proliferation and viability, assessed as the activity of mitochondrial dehydrogenases, was observed with MC-LF, followed by MC-LW and MC-LR. Cytotoxicity was quantified by measuring lactate dehydrogenase leakage. The more hydrophobic MC-LW and MC-LF induced markedly enhanced lactate dehydrogenase leakage compared to controls and MC-LR, indicating that the plasma membrane was damaged. All of the three toxins examined inhibited protein phosphatase 1, with MC-LF and MC-LW to a weaker extent compared to MC-LR. The higher toxic potential of the more hydrophobic microcystins could not be explained by the biophysical experiments performed. Taken together, our data show that the more hydrophobic microcystin variants induce higher toxicity in Caco-2 cells.

References

[1]  Codd, G.A.; Morrison, L.F.; Metcalf, J.S. Cyanobacterial toxins: Risk management for health protection. Toxicol. Appl. Pharmacol. 2005, 203, 264–272, doi:10.1016/j.taap.2004.02.016.
[2]  Sivonen, K.; Jones, G. Cyanobacterial Toxins. In Toxic Cyanobacteria in Water: A guide to Their Public Health Consequences, Monitoring and Management; Chorus, I., Bartram, J., Eds.; E & FN Spon: London, UK, 1999; pp. 41–111.
[3]  Del Campo, F.F.; Ouahid, Y. Identification of microcystins from three collection strains of microcystis aeruginosa. Environ. Pollut. 2010, 158, 2906–2914, doi:10.1016/j.envpol.2010.06.018.
[4]  Sano, T.; Takagi, H.; Kaya, K. A dhb-microcystin from the filamentous cyanobacterium planktothrix rubescens. Phytochemistry 2004, 65, 2159–2162, doi:10.1016/j.phytochem.2004.03.034.
[5]  Botes, D.P.; Tuinman, A.A.; Wessels, P.L.; Viljoen, C.C.; Kruger, H.; Williams, D.H.; Santikarn, S.; Smith, R.J.; Hammond, S.J. The structure of cyanoginosin-la, a cyclic heptapeptide toxin from the cyanobacterium microcystis aeruginosa. J. Chem. Soc. Perkin Trans. 1984.
[6]  Botes, D.P.; Wessels, L.; Kruger, H.; Runnegar, M.T.C.; Santikarn, S.; Smith, R.J.; Barna, J.C.J.; Williams, D.M. Structural studies on cyanoginosins-lr,-yr,-ya, and-ym, peptide toxins from microcystis aeruginosa. J. Chem. Soc. Perkin Trans. 1985.
[7]  Rinehart, K.L.; Harada, K.; Namikoshi, M.; Chen, C.; Harvis, C.A.; Munro, M.H.G.; Blunt, J.W.; Mulligan, P.E.; Beasley, V.R.; Dahlem, A.M.; et al. Nodularin, microcystin, and the configuration of adda. J. Am. Chem. Soc. 1988, 110, 8557–8558.
[8]  Rinehart, K.L.; Namikoshi, M.; Choi, B.W. Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J. Appl. Phycol. 1994, 6, 159–176, doi:10.1007/BF02186070.
[9]  World Health Organization. Guidelines for Drinking Water Quality, 4th; World Health Organization: Geneva, Switzerland, 2011.
[10]  Gupta, N.; Pant, S.C.; Vijayaraghavan, R.; Rao, P.V. Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (lr, rr, yr) in mice. Toxicology 2003, 188, 285–296, doi:10.1016/S0300-483X(03)00112-4.
[11]  Monks, N.R.; Liu, S.; Xu, Y.; Yu, H.; Bendelow, A.S.; Moscow, J.A. Potent cytotoxicity of the phosphatase inhibitor microcystin lr and microcystin analogues in oatp1b1- and oatp1b3-expressing hela cells. Mol. Cancer Ther. 2007, 6, 587–598.
[12]  Puerto, M.; Pichardo, S.; Jos, A.; Camean, A.M. Oxidative stress induced by microcystin-lr on plhc-1 fish cell line. Toxicol. in Vitro 2009, 23, 1445–1449.
[13]  Ward, C.J.; Codd, G.A. Comparative toxicity of four microcystins of different hydrophobicities to the protozoan, tetrahymena pyriformis. J. Appl. Microbiol. 1999, 86, 874–882, doi:10.1046/j.1365-2672.1999.00771.x.
[14]  Gkelis, S.; Harjunpaa, V.; Lanaras, T.; Sivonen, K. Diversity of hepatotoxic microcystins and bioactive anabaenopeptins in cyanobacterial blooms from greek freshwaters. Environ. Toxicol. 2005, 20, 249–256.
[15]  Spoof, L.; Vesterkvist, P.; Lindholm, T.; Meriluoto, J. Screening for cyanobacterial hepatotoxins, microcystins and nodularin in environmental water samples by reversed-phase liquid chromatography-electrospray ionisation mass spectrometry. J. Chromatogr. A 2003, 1020, 105–119, doi:10.1016/S0021-9673(03)00428-X.
[16]  Gurbuz, F.; Metcalf, J.S.; Karahan, A.G.; Codd, G.A. Analysis of dissolved microcystins in surface water samples from kovada lake, turkey. Sci. Total Environ. 2009, 407, 4038–4046, doi:10.1016/j.scitotenv.2009.02.039.
[17]  Bittencourt-Oliveira, M.C.; Oliveira, M.C.; Pinto, E. Diversity of microcystin-producing genotypes in brazilian strains of microcystis (cyanobacteria). Braz. J. Biol. 2011, 71, 209–216, doi:10.1590/S1519-69842011000100030.
[18]  Dietrich, D.; Hoeger, S. Guidance values for microcystins in water and cyanobacterial supplement products (blue-green algal supplements): A reasonable or misguided approach? Toxicol. Appl. Pharmacol. 2005, 203, 273–289, doi:10.1016/j.taap.2004.09.005.
[19]  Eriksson, J.E.; Toivola, D.; Meriluoto, J.A.; Karaki, H.; Han, Y.G.; Hartshorne, D. Hepatocyte deformation induced by cyanobacterial toxins reflects inhibition of protein phosphatases. Biochem. Biophys. Res. Commun. 1990, 173, 1347–1353, doi:10.1016/S0006-291X(05)80936-2.
[20]  MacKintosh, C.; Beattie, K.A.; Klumpp, S.; Cohen, P.; Codd, G.A. Cyanobacterial microcystin-lr is a potent and specific inhibitor of protein phosphatases 1 and 2a from both mammals and higher plants. FEBS Lett. 1990, 264, 187–192, doi:10.1016/0014-5793(90)80245-E.
[21]  MacKintosh, R.W.; Dalby, K.N.; Campbell, D.G.; Cohen, P.T.; Cohen, P.; MacKintosh, C. The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase 1. FEBS Lett. 1995, 371, 236–240.
[22]  Runnegar, M.; Berndt, N.; Kong, S.M.; Lee, E.Y.; Zhang, L. In vivo and in vitro binding of microcystin to protein phosphatases 1 and 2a. Biochem. Biophys. Res. Commun. 1995, 216, 162–169, doi:10.1006/bbrc.1995.2605.
[23]  Yoshizawa, S.; Matsushima, R.; Watanabe, M.F.; Harada, K.; Ichihara, A.; Carmichael, W.W.; Fujiki, H. Inhibition of protein phosphatases by microcystins and nodularin associated with hepatotoxicity. J. Cancer Res. Clin. Oncol. 1990, 116, 609–614, doi:10.1007/BF01637082.
[24]  Chen, T.; Cui, J.; Liang, Y.; Xin, X.; Young, D.O.; Chen, C.; Shen, P. Identification of human liver mitochondrial aldehyde dehydrogenase as a potential target for microcystin-lr. Toxicology 2006, 220, 71–80.
[25]  Mikhailov, A.; Harmala-Brasken, A.S.; Hellman, J.; Meriluoto, J.; Eriksson, J.E. Identification of atp-synthase as a novel intracellular target for microcystin-lr. Chem. Biol. Interact. 2003, 142, 223–237, doi:10.1016/S0009-2797(02)00075-3.
[26]  Fischer, W.J.; Altheimer, S.; Cattori, V.; Meier, P.J.; Dietrich, D.R.; Hagenbuch, B. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol. Appl. Pharmacol. 2005, 203, 257–263.
[27]  Zeller, P.; Clement, M.; Fessard, V. Similar uptake profiles of microcystin-lr and -rr in an in vitro human intestinal model. Toxicology 2011, 290, 7–13, doi:10.1016/j.tox.2011.08.005.
[28]  De Matos Alves Pinto, L.; Malheiros, S.V.P.; Lino, A.C.S.; de Paula, E.; Perillo, M.A. Hydroxyzine, promethazine and thioridazine interaction with phospholipid monomolecular layers at the air-water interface. Biophys. Chem. 2006, 119, 247–255.
[29]  Lee, A.G. Biological membranes: The importance of molecular detail. Trends Biochem. Sci. 2011, 36, 493–500, doi:10.1016/j.tibs.2011.06.007.
[30]  Vesterkvist, P.S.M.; Meriluoto, J.A.O. Interaction between microcystins of different hydrophobicities and lipid monolayers. Toxicon 2003, 41, 349–355, doi:10.1016/S0041-0101(02)00315-X.
[31]  Bagatolli, L.A. To see or not to see: Lateral organization of biological membranes and fluorescence microscopy. Biochim. Biophys. Acta 2006, 1758, 1541–1556, doi:10.1016/j.bbamem.2006.05.019.
[32]  Purdon, A.D.; Tinker, D.O.; Neumann, A.W. Detection of lipid phase transitions by surface tensiometry. Chem. Phys. Lipids 1976, 17, 344–352.
[33]  Parasassi, T.; de Stasio, G.; d’Ubaldo, A.; Gratton, E. Phase fluctuation in phospholipid membranes revealed by laurdan fluorescence. Biophys. J. 1990, 57, 1179–1186.
[34]  Parasassi, T.; de Stasio, G.; Ravagnan, G.; Rusch, R.M.; Gratton, E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of laurdan fluorescence. Biophys. J. 1991, 60, 179–189.
[35]  Clegg, R.M. Fluorescence resonance energy transfer. Curr. Opin. Biotechnol. 1995, 6, 103–110.
[36]  Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 2nd ed.; Kluvert Academic/Plenum Publishers: New York, NY, USA, 1999.
[37]  Wu, P.G.; Brand, L. Resonance energy transfer: Methods and applications. Anal. Biochem. 1994, 218, 1–13, doi:10.1006/abio.1994.1134.
[38]  Schroeder, F.; Nemecz, G.; Gratton, E.; Barenholz, Y.; Thompson, T.E. Fluorescence properties of cholestatrienol in phosphatidylcholine bilayer vesicles. Biophys. Chem. 1988, 32, 57–72, doi:10.1016/0301-4622(88)85034-8.
[39]  Toivola, D.M.; Goldman, R.D.; Garrod, D.R.; Eriksson, J.E. Protein phosphatases maintain the organization and structural interactions of hepatic keratin intermediate filaments. J. Cell Sci. 1997, 110, 23–33.
[40]  McDermott, C.M.; Nho, C.W.; Howard, W.; Holton, B. The cyanobacterial toxin, microcystin-lr, can induce apoptosis in a variety of cell types. Toxicon 1998, 36, 1981–1996, doi:10.1016/S0041-0101(98)00128-7.
[41]  Fladmark, K.E.; Brustugun, O.T.; Hovland, R.; Boe, R.; Gjertsen, B.T.; Zhivotovsky, B.; Doskeland, S.O. Ultrarapid caspase-3 dependent apoptosis induction by serine/threonine phosphatase inhibitors. Cell Death Differentiation 1999, 6, 1099–1108.
[42]  Ding, W.X.; Shen, H.M.; Ong, C.N. Microcystic cyanobacteria extract induces cytoskeletal disruption and intracellular glutathione alteration in hepatocytes. Environ. Health Perspect. 2000, 108, 605–609.
[43]  Gehringer, M.M. Microcystin-lr and okadaic acid-induced cellular effects: A dualistic response. FEBS Lett. 2004, 557, 1–8, doi:10.1016/S0014-5793(03)01447-9.
[44]  Berridge, M.V.; Herst, P.M.; Tan, A.S.; El-Gewely, M.R. Tetrazolium Dyes as Tools in Cell Biology: New Insights into Their Cellular Reduction. In Biotechnology Annual Review; Elsevier: Amsterdam, The Netherlands, 2005; Volume 11, pp. 127–152.
[45]  Korzeniewski, C.; Callewaert, D.M. An enzyme-release assay for natural cytotoxicity. J. Immunol. Methods 1983, 64, 313–320.
[46]  Ufelmann, H.; Kruger, T.; Luckas, B.; Schrenk, D. Human and rat hepatocyte toxicity and protein phosphatase 1 and 2a inhibitory activity of naturally occurring desmethyl-microcystins and nodularins. Toxicology 2012, 293, 59–67, doi:10.1016/j.tox.2011.12.011.
[47]  Nobre, A.C.; Jorge, M.C.; Menezes, D.B.; Fonteles, M.C.; Monteiro, H.S. Effects of microcystin-lr in isolated perfused rat kidney. Braz. J. Med. Biol. Res. 1999, 32, 985–988.
[48]  Milutinovic, A.; Zivin, M.; Zorc-Pleskovic, R.; Sedmak, B.; Suput, D. Nephrotoxic effects of chronic administration of microcystins -lr and -yr. Toxicon 2003, 42, 281–288, doi:10.1016/S0041-0101(03)00143-0.
[49]  Gaudin, J.; Huet, S.; Jarry, G.; Fessard, V. In vivo DNA damage induced by the cyanotoxin microcystin-lr: Comparison of intra-peritoneal and oral administrations by use of the comet assay. Mutat. Res. 2008, 652, 65–71, doi:10.1016/j.mrgentox.2007.10.024.
[50]  Alverca, E.; Andrade, M.; Dias, E.; Bento, F.S.; Batoreu, M.C.; Jordan, P.; Silva, M.J.; Pereira, P. Morphological and ultrastructural effects of microcystin-lr from microcystis aeruginosa extract on a kidney cell line. Toxicon 2009, 54, 283–294, doi:10.1016/j.toxicon.2009.04.014.
[51]  Humpage, A.R.; Hardy, S.J.; Moore, E.J.; Froscio, S.M.; Falconer, I.R. Microcystins (cyanobacterial toxins) in drinking water enhance the growth of aberrant crypt foci in the mouse colon. J. Toxicol. Environ. Health Part A 2000, 61, 155–165, doi:10.1080/00984100050131305.
[52]  Zegura, B.; Volcic, M.; Lah, T.T.; Filipic, M. Different sensitivities of human colon adenocarcinoma (caco-2), astrocytoma (ipddc-a2) and lymphoblastoid (ncnc) cell lines to microcystin-lr induced reactive oxygen species and DNA damage. Toxicon 2008, 52, 518–525, doi:10.1016/j.toxicon.2008.06.026.
[53]  Lankoff, A.; Carmichael, W.W.; Grasman, K.A.; Yuan, M. The uptake kinetics and immunotoxic effects of microcystin-lr in human and chicken peripheral blood lymphocytes in vitro. Toxicology 2004, 204, 23–40, doi:10.1016/j.tox.2004.05.016.
[54]  Qiu, T.; Xie, P.; Liu, Y.; Li, G.; Xiong, Q.; Hao, L.; Li, H. The profound effects of microcystin on cardiac antioxidant enzymes, mitochondrial function and cardiac toxicity in rat. Toxicology 2009, 257, 86–94.
[55]  Chong, M.W.; Gu, K.D.; Lam, P.K.; Yang, M.; Fong, W.F. Study on the cytotoxicity of microcystin-lr on cultured cells. Chemosphere 2000, 41, 143–147, doi:10.1016/S0045-6535(99)00402-6.
[56]  Sicinska, P.; Bukowska, B.; Michalowicz, J.; Duda, W. Damage of cell membrane and antioxidative system in human erythrocytes incubated with microcystin-lr in vitro. Toxicon 2006, 47, 387–397, doi:10.1016/j.toxicon.2005.12.006.
[57]  Puerto, M.; Pichardo, S.; Jos, á.; Prieto, A.I.; Sevilla, E.; Frías, J.E.; Cameán, A.M. Differential oxidative stress responses to pure microcystin-lr and microcystin-containing and non-containing cyanobacterial crude extracts on caco-2 cells. Toxicon 2010, 55, 514–522, doi:10.1016/j.toxicon.2009.10.003.
[58]  Artursson, P.; Palm, K.; Luthman, K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 2001, 46, 27–43.
[59]  Ungell, A.-L.B. Caco-2 replace or refine? Drug Discov. Today 2004, 1, 423–430, doi:10.1016/j.ddtec.2004.11.003.
[60]  Behrens, I.; Kissel, T. Do cell culture conditions influence the carrier-mediated transport of peptides in caco-2 cell monolayers? Eur. J. Pharm. Sci. 2003, 19, 433–442, doi:10.1016/S0928-0987(03)00146-5.
[61]  Botha, N.; Gehringer, M.M.; Downing, T.G.; van de Venter, M.; Shephard, E.G. The role of microcystin-lr in the induction of apoptosis and oxidative stress in caco2 cells. Toxicon 2004, 43, 85–92.
[62]  Fischer, A.; Hoeger, S.J.; Stemmer, K.; Feurstein, D.J.; Knobeloch, D.; Nussler, A.; Dietrich, D.R. The role of organic anion transporting polypeptides (oatps/slcos) in the toxicity of different microcystin congeners in vitro: A comparison of primary human hepatocytes and oatp-transfected hek293 cells. Toxicol. Appl. Pharmacol. 2010, 245, 9–20, doi:10.1016/j.taap.2010.02.006.
[63]  Craig, M.; Luu, H.A.; McCready, T.L.; Williams, D.; Andersen, R.J.; Holmes, C.F. Molecular mechanisms underlying he interaction of motuporin and microcystins with type-1 and type-2a protein phosphatases. Biochem. Cell Biol. 1996, 74, 569–578, doi:10.1139/o96-061.
[64]  Moorhead, G.; MacKintosh, R.W.; Morrice, N.; Gallagher, T.; MacKintosh, C. Purification of type 1 protein (serine/threonine) phosphatases by microcystin-sepharose affinity chromatography. FEBS Lett. 1994, 356, 46–50, doi:10.1016/0014-5793(94)01232-6.
[65]  Goldberg, J.; Huang, H.B.; Kwon, Y.G.; Greengard, P.; Nairn, A.C.; Kuriyan, J. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature 1995, 376, 745–753.
[66]  Blom, J.F.; Juttner, F. High crustacean toxicity of microcystin congeners does not correlate with high protein phosphatase inhibitory activity. Toxicon 2005, 46, 465–470, doi:10.1016/j.toxicon.2005.06.013.
[67]  Meriluoto, J.; Lawton, L.; Harada, K. Isolation and detection of microcystins and nodularins, cyanobacterial peptide hepatotoxins. Methods Mol. Biol. 2000, 145, 65–87.
[68]  Fischer, R.T.; Stephenson, F.A.; Shafiee, A.; Schroeder, F. [delta]5,7,9(11)-cholestatrien-3[beta]-ol: A fluorescent cholesterol analogue. Chem. Phys. Lipids 1984, 36, 1–14, doi:10.1016/0009-3084(84)90086-0.
[69]  Bj?rkbom, A.; Yamamoto, T.; Kaji, S.; Harada, S.; Katsumura, S.; Slotte, J.P. Importance of the phosphocholine linkage on sphingomyelin molecular properties and interactions with cholesterol; a study with phosphate oxygen modified sphingomyelin-analogues. Biochim. Biophys. Acta 2008, 1778, 1501–1507, doi:10.1016/j.bbamem.2008.03.005.
[70]  Hope, M.J.; Bally, M.B.; Webb, G.; Cullis, P.R. Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim. Biophys. Acta 1985, 812, 55–65, doi:10.1016/0005-2736(85)90521-8.
[71]  Engelke, M.; Bojarski, P.; Bloss, R.; Diehl, H. Tamoxifen perturbs lipid bilayer order and permeability: Comparison of dsc, fluorescence anisotropy, laurdan generalized polarization and carboxyfluorescein leakage studies. Biophys. Chem. 2001, 90, 157–173, doi:10.1016/S0301-4622(01)00139-9.
[72]  An, J.; Carmichael, W.W. Use of a colorimetric protein phosphatase inhibition assay and enzyme linked immunosorbent assay for the study of microcystins and nodularins. Toxicon 1994, 32, 1495–1507, doi:10.1016/0041-0101(94)90308-5.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133