全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

A Self-Optimizing Scheme for Energy Balanced Routing in Wireless Sensor Networks Using SensorAnt

DOI: 10.3390/s120811307

Keywords: energy balancing, energy consumption, ant colony, battery lifetime, WSNs

Full-Text   Cite this paper   Add to My Lib

Abstract:

Planning of energy-efficient protocols is critical for Wireless Sensor Networks (WSNs) because of the constraints on the sensor nodes’ energy. The routing protocol should be able to provide uniform power dissipation during transmission to the sink node. In this paper, we present a self-optimization scheme for WSNs which is able to utilize and optimize the sensor nodes’ resources, especially the batteries, to achieve balanced energy consumption across all sensor nodes. This method is based on the Ant Colony Optimization (ACO) metaheuristic which is adopted to enhance the paths with the best quality function. The assessment of this function depends on multi-criteria metrics such as the minimum residual battery power, hop count and average energy of both route and network. This method also distributes the traffic load of sensor nodes throughout the WSN leading to reduced energy usage, extended network life time and reduced packet loss. Simulation results show that our scheme performs much better than the Energy Efficient Ant-Based Routing (EEABR) in terms of energy consumption, balancing and efficiency.

References

[1]  Yick, J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008, 52, 2292–2330, doi:10.1016/j.comnet.2008.04.002.
[2]  Baronti, P.; Pillai, P.; Chook, V.W.C.; Chessa, S.; Gotta, A.; Hu, Y.F. Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards. Comput. Commun. 2007, 30, 1655–1695, doi:10.1016/j.comcom.2006.12.020.
[3]  Anastasi, G.; Conti, M.; Di Francesco, M.; Passarella, A. Energy conservation in wireless sensor networks: A survey. Ad Hoc Netw. 2009, 7, 537–568, doi:10.1016/j.adhoc.2008.06.003.
[4]  Kandris, D.; Tsioumas, P.; Tzes, A.; Nikolakopoulos, G.; Vergados, D.D. Power conservation through energy efficient routing in wireless sensor networks. Sensors 2009, 9, 7320–7342, doi:10.3390/s90907320. 22399998
[5]  Al-Karaki, J.N.; Kamal, A.E. Routing techniques in wireless sensor networks: A survey. Wirel. Commun. IEEE. 2004, 11, 6–28.
[6]  Saleem, M.; Di Caro, G.A.; Farooq, M. Swarm intelligence based routing protocol for wireless sensor networks: Survey and future directions. Inf. Sci. 2011, 181, 4597–4624, doi:10.1016/j.ins.2010.07.005.
[7]  Dorigo, M.; Stützle, T. Ant Colony Optimization; The MIT Press: Cambridge, MA, USA, 2004.
[8]  Camilo, T.; Carreto, C.; Silva, J.; Boavida, F. An Energy-Efficient Ant-Based Routing Algorithm for Wireless Sensor Networks. Proceedings of the Ant Colony Optimization and Swarm Intelligence, Brussels, Belgium, 4–7 September 2006; pp. 49–59.
[9]  Wang, X.; Ma, J.-J.; Wang, S.; Bi, D.-W. Cluster-based dynamic energy management for collaborative target tracking in wireless sensor networks. Sensors 2007, 7, 1193–1215, doi:10.3390/s7071193.
[10]  El-Hoiydi, A.; Decotignie, J. WiseMAC: An ultra low power MAC protocol for multi-hop wireless sensor networks. Algorithmic Asp. Wirel. Sens. Netw. 2004, 3121, 18–31.
[11]  Chen, M.; Kwon, T.; Mao, S.; Yuan, Y. Reliable and energy-efficient routing protocol in dense wireless sensor networks. Int. J. Sens. Netw. IJSNET 2008, 4, 104–117, doi:10.1504/IJSNET.2008.019256.
[12]  Jae-Hwan, C.; Tassiulas, L. Maximum lifetime routing in wireless sensor networks. IEEE ACM Trans. Netw. 2004, 12, 609–619, doi:10.1109/TNET.2004.833122.
[13]  Bonabeau, E.; Dorigo, M.; Theraulaz, G. Swarm Intelligence: From Natural to Artificial Systems; Oxford University Press: New York, NY, USA, 1999.
[14]  Dorigo, M.; Caro, G.D.; Gambardella, L.M. Ant algorithms for discrete optimization. Artif. Life 1999, 5, 137–172, doi:10.1162/106454699568728. 10633574
[15]  Singh, G.; Das, S.; Gosavi, S.V.; Pujar, S. Ant Colony Algorithms for Steiner Trees: An Application to Routing In Sensor Networks. In Intelligent Information Technologies: Concepts, Methodologies, Tools, and Applications; Sugumaran, V., Ed.; Oakland University: Rochester, MI, USA, 2008; pp. 1551–1575.
[16]  Ghasem, A.R.; Rahman, A.M.; Rahman, M.A.; Gueaieb, W. Ant Colony-Based Many-to-One Sensory Data Routing in Wireless Sensor Networks. Proceedings of the Computer Systems and Applications, 2008 IEEE/ACS International Conference; pp. 1005–1010.
[17]  Misra, R.; Mandal, C. Ant-Aggregation: Ant Colony Algorithm for optimal Data Aggregation in Wireless Sensor Networks. Proceedings of the Wireless and Optical Communications Networks, 2006 IFIP International Conference, Bangalore, India, 11–13 April 2006; p. 5.
[18]  Salehpour, A.A.; Mirmobin, B.; Afzali-Kusha, A.; Mohammadi, S. An Energy Efficient Routing Protocol for Cluster-Based Wireless Sensor Networks Using Ant Colony Optimization. Proceedings of the Innovations in Information Technology, Al Ain, United Arab Emirates, 16–18 December 2008; pp. 455–459.
[19]  Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-Efficient Communication Protocol for Wireless Microsensor Networks. Proceedings of the 33rd Annual Hawaii International Conference on System Sciences (HICSS-33), Maui, HI, USA, 4–7 January 2000; pp. 1–10.
[20]  Matrouk, K.; Landfeldt, B. RETT-gen: A globally efficient routing protocol for wireless sensor networks by equalising sensor energy and avoiding energy holes. Ad Hoc Netw. 2009, 7, 514–536, doi:10.1016/j.adhoc.2008.07.002.
[21]  Lindsey, S.; Raghavendra, C.S. PEGASIS: Power-Efficient Gathering in Sensor Information Systems. Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 9– 16 March 2002; pp. 1125–1130.
[22]  Manjeshwar, A.; Agrawal, D.P. TEEN: A Routing Protocol for enhanced Efficiency in Wireless Sensor Networks. Proceedings of the 15th International Parallel & Distributed Processing Symposium (IPDPS'01), San Francisco, CA, USA, 23–27 April 2001; pp. 2009–2015.
[23]  Rogers, A.; David, E.; Jennings, N.R. Self-organized routing for wireless microsensor networks. IEEE Trans. Sys. Man. Cybern. A. 2005, 35, 349–359, doi:10.1109/TSMCA.2005.846382.
[24]  Intanagonwiwat, C.; Govindan, R.; Estrin, D. Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks. Proceedings of the 6th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom'00), Boston, MA, USA, 6– 11 August 2000; pp. 56–67.
[25]  Lin, M.; Marzullo, K.; Masini, S. Gossip versus Deterministic Flooding: Low Message Overhead and High Reliability for Broadcasting on Small Networks. Technical Report No. 902385; University of California at San Diego: La Jolla, CA, USA, 1999.
[26]  Ok, C.-S.; Lee, S.; Mitra, P.; Kumara, S. Distributed energy balanced routing for wireless sensor networks. Comput. Ind. Eng. 2009, 57, 125–135, doi:10.1016/j.cie.2009.01.013.
[27]  Sohraby, K.; Minoli, D.; Znati, T.F. Wireless Sensor Networks: Technology, Protocols, and Applications; Wiley-Blackwell: Hoboken, NJ, USA, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133