全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Toxins  2012 

Multimodal Protein Constructs for Herbivore Insect Control

DOI: 10.3390/toxins4060455

Keywords: insect-resistant transgenic plants, Bt plants, Cry toxins, defense proteins, gene stacking, polyproteins, protein pyramiding, fusion proteins

Full-Text   Cite this paper   Add to My Lib

Abstract:

Transgenic plants expressing combinations of microbial or plant pesticidal proteins represent a promising tool for the efficient, durable control of herbivorous insects. In this review we describe current strategies devised for the heterologous co-expression of pesticidal proteins in planta, some of which have already shown usefulness in plant protection. Emphasis is placed on protein engineering strategies involving the insertion of single DNA constructs within the host plant genome. Multimodal fusion proteins integrating complementary pesticidal functions along a unique polypeptide are first considered, taking into account the structural constraints associated with protein or protein domain grafting to biologically active proteins. Strategies that allow for the co- or post-translational release of two or more pesticidal proteins are then considered, including polyprotein precursors releasing free proteins upon proteolytic cleavage, and multicistronic transcripts for the parallel translation of single protein-encoding mRNA sequences.

References

[1]  James, C. Brief 42: Global Status of Commercialized Biotech/GM Crops: 2010; ISAAA: Ithaca, New York, NY, USA, 2010.
[2]  Sanahuja, G.; Banakar, R.; Twyman, R.M.; Capell, T.; Christou, P. Bacillus tuhringiensis: A century of research, development and commercial applications. Plant Biotechnol. J. 2011, 9, 283–300, doi:10.1111/j.1467-7652.2011.00595.x.
[3]  Tabashnik, B.E.; Gassmann, A.J.; Crowder, D.W.; Carrière, Y. Insect resistance to Bt crops: Evidence versus theory. Nat. Biotechnol. 2008, 26, 199–202, doi:10.1038/nbt1382.
[4]  Tabashnik, B.E.; van Rensburg, J.B.J.; Carrière, Y. Field-evolved insect resistance to Bt crops: Definition, theory, and data. J. Econ. Entomol. 2009, 102, 2011–2025, doi:10.1603/029.102.0601.
[5]  Huang, F.; Parker, R.; Leonard, B.R.; Yang, Y.; Liu, J. Frequency of resistance alleles to Bacillus thuringiensis-corn in Texas populations of the sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae). Crop Protect. 2009, 28, 174–180, doi:10.1016/j.cropro.2008.10.002.
[6]  Downes, S.; Parker, T.L.; Mahon, R.J. Frequence of alleles conferring resistance to the Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in Australian populations of Helicoverpa punctigera (Lepidoptera: Noctuidae) from 2002 to 2006. J. Econ. Entomol. 2009, 102, 733–742, doi:10.1603/029.102.0234.
[7]  Griffitts, J.S.; Aroian, R.V. Many roads to resistance: How invertebrates adapt to Bt toxins. Bioessays 2005, 27, 614–624, doi:10.1002/bies.20239.
[8]  Meihls, L.N.; Higdon, M.L.; Ellersieck, M.; Hibbard, B.E. Selection for resistance to mCry3A-expressing transgenic corn in western corn rootworm. J. Econ. Entomol. 2011, 104, 1045–1054, doi:10.1603/EC10320.
[9]  Oswald, K.J.; French, B.W.; Nielson, C.; Bagley, M. Selection for Cry3Bb1 resistance in a genetically diverse population of nondiapausing western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 2011, 104, 1038–1044, doi:10.1603/EC10312.
[10]  Kruger, M.; van Rensburg, J.B.J.; van den Berg, J. Perspective on the development of stem borer resistance to Bt maize and refuge compliance at the Vaalharts irrigation scheme in South Africa. Crop Protect. 2009, 28, 684–689, doi:10.1016/j.cropro.2009.04.001.
[11]  Bagla, P. Hardy cotton-munching pests are latest blow to GM crops. Science 2010, 327, doi:10.1126/science.327.5972.1439.
[12]  Storer, N.P.; Babcock, J.M.; Schlenz, M.; Meade, T.; Thompson, G.D.; Bing, J.W.; Huckaba, R.M. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 2010, 103, 1031–1038, doi:10.1603/EC10040.
[13]  Dhura, S.; Gujan, G.T. Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag. Sci. 2011, 67, 898–903, doi:10.1002/ps.2127.
[14]  Gassmann, A.J.; Petzold-Maxwell, J.L.; Keweshan, R.S.; Dunbar, M.W. Field-evolved resistance to Bt maize by western corn rootworm. PLoS One 2011, 6, doi:10.1371/journal.pone.0022629.
[15]  Zhang, H.; Yin, W.; Zhao, J.; Jin, L.; Yang, Y.; Wu, S.; Tabashnik, B.E.; Wu, Y. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China. PLoS One 2011, 6, doi:10.1371/journal.pone.0022874.
[16]  Bates, S.L.; Zhao, J.-Z.; Roush, R.T.; Shelton, A.M. Insect resistance management in GM crops: Past, present and future. Nat. Biotechnol. 2005, 23, 57–62, doi:10.1038/nbt1056.
[17]  Naranjo, S.E. Impacts of Bt transgenic cotton on integrated pest management. J. Agric. Food Chem. 2011, 59, 5842–5851, doi:10.1021/jf102939c.
[18]  Gray, M.E. Relevance of traditional integrated pest management (IPM) strategies for commercial corn producers in a transgenic agroecosystem: A bygone era? J. Agric. Food Chem. 2011, 59, 5852–5858, doi:10.1021/jf102673s.
[19]  Roush, R.T. Two-toxin strategies for management of insecticidal transgenic crops: Can pyramiding succeed where pesticide mixtures have not? Phil. Trans. R. Soc. Lond. B 1998, 353, 1777–1786, doi:10.1098/rstb.1998.0330.
[20]  Moar, W.J.; Anilkumar, K.J. The power of the pyramid. Science 2007, 318, 1561–1562, doi:10.1126/science.1151313.
[21]  Gould, F. Bt resistance management—theory meets data. Nat. Biotechnol. 2003, 21, 1450–1451, doi:10.1038/nbt1203-1450.
[22]  Zhao, J.-Z.; Cao, J.; Li, Y.; Collins, H.L.; Roush, R.T.; Earle, E.D.; Shelton, A.M. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat. Biotechnol. 2003, 21, 1493–1497, doi:10.1038/nbt907.
[23]  Zhao, J.-Z.; Cao, J.; Collins, H.L.; Bates, S.L.; Roush, R.T.; Earle, E.D.; Shelton, A.M. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc. Natl. Acad. Sci. USA 2005, 102, 8426–8430, doi:10.1073/pnas.0409324102. 15939892
[24]  Alyokhin, A. Scant evidence supports EPA’s pyramided Bt corn refuge size of 5%. Nat. Biotechnol. 2011, 29, 577–578, doi:10.1038/nbt.1911.
[25]  Ives, A.R.; Glaum, P.R.; Ziebarth, N.L.; Andow, D.A. The evolution of resistance to two-toxin pyramid transgenic crops. Ecol. Appl. 2011, 21, 503–515, doi:10.1890/09-1869.1.
[26]  Huang, F.; Ghimire, M.N.; Leonard, B.R.; Wang, J.; Daves, C.; Levy, R.; Cook, D.; Head, G.P.; Yang, Y.; Temple, J.; et al. F2 screening for resistance to pyramided Bacillus thuringiensis maize in Louisiana and Mississippi populations of Diatraea saccharalis (Lepidoptera: Crambidae). Pest Manag. Sci. 2011, 67, 1269–1276, doi:10.1002/ps.2182.
[27]  Chitkowski, R.L.; Turnispeed, S.G.; Sullivan, M.J.; Bridges, W.C., Jr. Field and laboratory evaluations of transgenic cottons expressing one or two Bacillus thuringiensis var. kurstaki Berliner proteins for management of noctuid (Lepidopteran) pests. J. Econ. Entomol. 2003, 96, 755–762, doi:10.1603/0022-0493-96.3.755.
[28]  Jackson, R.E.; Bradley, J.R.; van Duyn, J.W. Performance of feral and Cry1Ac-selected Helicoverpa zea (Lepidoptera: Noctuidae) strains on transgenic cottons expressing one or two Bacillus thuringiensis ssp. kurstaki proteins under greenhouse conditions. J. Entomol. Sci. 2004, 39, 46–55.
[29]  Tu, J.; Zhang, G.; Datta, K.; Xu, C.; He, Y.; Zhang, Q.; Khush, G.S.; Datta, S.K. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis ?-endotoxin. Nat. Biotechnol. 2000, 18, 1101–1104, doi:10.1038/80310.
[30]  Bohorova, N.; Frutos, R.; Royer, M.; Estanol, P.; Pacheco, M.; Rascon, Q.; McLean, S.; Hoisington, D. Novel synthetic Bacillus thuringiensis cry1B gene and the cry1B-cry1Ab translational fusion confer resistance to southwestern corn borer, sugarcane borer and fall armyworm in transgenic tropical maize. Theor. Appl. Genet. 2001, 103, 817–826, doi:10.1007/s001220100686.
[31]  Naimov, S.; Dukiandjiev, S.; de Maagd, R.A. A hybrid Bacillus thuringiensis delta-endotoxin gives resistance against a coleopteran and a lepidopteran pest in transgenic potato. Plant Biotechnol. J. 2003, 1, 51–57. 17147680
[32]  Lee, M.K.; Walters, F.S.; Hart, H.; Palekar, N.; Chen, J.-S. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab ?-endotoxin. Appl. Environ. Microbiol. 2003, 69, 4648–4657, doi:10.1128/AEM.69.8.4648-4657.2003.
[33]  Jackson, R.E.; Marcus, M.A.; Gould, F.; Bradley, J.R.; van Duyn, J.W. Cross-resistance responses of CryIAc-selected Heliothis virescens (Lepidoptera: Noctuidae) to the Bacillus thuringiensis protein vip3A. J. Econ. Entomol. 2007, 100, 180–186, doi:10.1603/0022-0493(2007)100[180:CROCHV]2.0.CO;2.
[34]  Kurtz, R.W.; McCaffery, A.; O’Reilly, D. Insect resistance management for Syngenta’s VipCot? transgenic cotton. J. Inverteb. Pathol. 2007, 95, 227–230, doi:10.1016/j.jip.2007.03.014.
[35]  Burkness, E.C.; Dively, G.; Patton, T.; Morey, A.C.; Hutchison, W.D. Novel Vip3A Bacillus thuringiensis (Bt) maize approaches high-dose efficacy against Helicoverpa zea (Lepidoptera: Noctuidae) under field conditions: Implications for resistance management. GM Crops 2010, 1, 337–343, doi:10.4161/gmcr.1.5.14765.
[36]  Maqbool, S.B.; Riazzudin, S.; Loc, N.T.; Gatehouse, A.M.R.; Gatehouse, J.A.; Christou, P. Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol. Breed. 2001, 7, 85–93, doi:10.1023/A:1009644712157.
[37]  Yang, G.D.; Zhu, Z.; Li, Y.O.; Zhu, Z.J. Transformation of Bt-CpTi fusion protein gene to cabbage (Brassica oleracea var. capitata) mediated by Agrobacterium tumefaciens and particle bombardment. Shi Yan Sheng Wu Xue Bao 2002, 35, 117–122. 15344329
[38]  Datta, K.; Baisakh, N.; Thet, K.M.; Tu, J.; Datta, S.K. Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theor. Appl. Genet. 2002, 106, 1–8. 12582865
[39]  Su, X.; Chu, Y.; Li, H.; Hou, Y.; Zhang, B.; Huang, Q.; Hu, Z.; Huang, R.; Tian, Y. Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus x euramericana ‘Guariento’). PLoS One 2011, 6, doi:10.1371/journal.pone.0024614.
[40]  Zhang, B.; Chen, M.; Zhang, X.; Luan, H.; Diao, S.; Tian, Y.; Su, X. Laboratory and field evaluation of the transgenic Populus alba ×Populus glandulosa expressing double coleopteran-resistance genes. Tree Physiol. 2011, 31, 567–573, doi:10.1093/treephys/tpr032.
[41]  Moellenbeck, D.J.; Peters, M.L.; Bing, J.W.; Rouse, J.R.; Higgins, L.S.; Sims, L.; Nevshemal, T.; Marshall, L.; Ellis, R.T.; Bystrak, P.G.; et al. Insecticidal proteins from Bacillus thuringiensis protect corn from corn rootworms. Nat. Biotechnol. 2001, 19, 668–672, doi:10.1038/90282.
[42]  Boulter, D.; Edwards, G.A.; Gatehouse, A.M.R.; Gatehouse, J.A.; Hilder, V.A. Additive protective effects of different plant-derived insect resistance genes in transgenic tobacco plants. Crop Protect. 1990, 9, 351–354, doi:10.1016/0261-2194(90)90005-R.
[43]  Tang, K.; Tinjuangjun, P.; Xu, Y.; Sun, X.; Gatehouse, J.A.; Ronald, P.C.; Qi, H.; Lu, X.; Christou, P.; Kohli, A. Particle-bombardment-mediated co-transformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and sap-sucking insect pests. Planta 1999, 208, 552–563, doi:10.1007/s004250050593.
[44]  Campbell, M.A.; Fitzgerald, H.A.; Ronald, P.C. Engineering pathogen resistance in crop plants. Transg. Res. 2002, 11, 599–613, doi:10.1023/A:1021109509953.
[45]  Abdeen, A.; Virgos, A.; Olivella, E.; Villanueva, J.; Aviles, X.; Gabarra, R.; Prat, S. Multiple insect resistance in transgenic tomato plants over-expressing two families of plant proteinase inhibitors. Plant Mol. Biol. 2005, 57, 189–202, doi:10.1007/s11103-004-6959-9. 15821877
[46]  Senthilkumar, R.; Cheng, C.-P.; Yeh, K.-W. Genetically pyramiding protease-inhibitor genes for dual braod-spectrum resistance against insect and phytopathogens in transgenic tobacco. Plant Biotechnol. J. 2010, 8, 65–75, doi:10.1111/j.1467-7652.2009.00466.x.
[47]  Cao, J.; Zhao, J.-Z.; Tang, J.D.; Shelton, A.M.; Earle, E.D. Broccoli plants with pyramided cry1Ac and cry1C Bt genes control diamondback moths resistant to Cry1A and Cry1C proteins. Theor. Appl. Genet. 2002, 105, 258–264, doi:10.1007/s00122-002-0942-0.
[48]  Yang, Z.; Chen, H.; Tang, W.; Hua, H.; Lin, Y. Development and characterisation of transgenic rice expressing two Bacillus thuringiensis genes. Pest Manag. Sci. 2011, 67, 414–422, doi:10.1002/ps.2079.
[49]  Ramesh, S.; Nagadhara, D.; Pasalu, I.C.; Padma Kumari, A.; Sarma, N.P.; Reddy, V.D.; Rao, K.V. Development of stem borer resistant transgenic parental lines involved in the production of hybrid rice. J. Biotechnol. 2004, 111, 131–141, doi:10.1016/j.jbiotec.2004.04.004. 15219400
[50]  Vemanna, R.S.; Chandrashekar, B.K.; Hanumantha Rao, H.M.; Sathyanarayanagupta, S.K.; Sarangi, K.S.; Nataraja, K.N.; Udayakumar, M. A modified multisite Gateway cloning strategy for consolidation of genes in plants. Mol. Biotechnol. 2012, doi:10.1007/s12033-012-9499-6.
[51]  Halpin, C. Gene stacking in transgenic plants–the challenge for 21st century plant biotechnology. Plant Biotechnol. J. 2005, 3, 141–155, doi:10.1111/j.1467-7652.2004.00113.x.
[52]  Dafny-Yelin, M.; Tzfira, T. Delivery of multiple transgenes to plant cells. Plant Physiol. 2007, 145, 1118–1128, doi:10.1104/pp.107.106104.
[53]  Naqvi, S.; Farre, G.; Sanahuja, G.; Capell, T.; Zhu, C.; Christou, P. When more is better: Multigene engineering in plants. Trends Plant Sci. 2009, 15, 48–56. 19853493
[54]  Saxena, P.; Hsieh, Y.C.; Alvarado, V.Y.; Sainsbury, F.; Saunders, K.; Lomonossoff, G.P.; Scholthof, H.B. Improved foreign gene expression in plants using a virus-encoded suppressor of RNA silencing modified to be developmentally harmless. Plant Biotechnol. J. 2011, 9, 703–712, doi:10.1111/j.1467-7652.2010.00574.x.
[55]  Miki, B.; Abdeen, A.; Manaba, Y.; MacDonald, P. Selectable marker genes and unintended changes to the plant transcriptome. Plant Biotechnol. J. 2009, 7, 211–218, doi:10.1111/j.1467-7652.2009.00400.x.
[56]  Uhlen, M.; Forsberg, G.; Moks, T.; Hartmanis, M.; Nilsson, B. Fusion proteins in biotechnology. Curr. Opin. Biotechnol. 1992, 3, 363–369, doi:10.1016/0958-1669(92)90164-E. 1368437
[57]  Bouchard, é.; Cloutier, C.; Michaud, D. Oryzacystatin I expressed in transgenic potato induces digestive compensation in an insect natural predator via its herbivorous prey feeding on the plant. Mol. Ecol. 2003, 12, 2439–2446, doi:10.1046/j.1365-294X.2003.01919.x.
[58]  Waldron, C.; Wegrich, L.M.; Owens Merlo, P.A.; Walsh, T.A. Characterization of a genomic sequence coding for potato multicystatin, an eight-domain cysteine proteinase inhibitor. Plant Mol. Biol. 1993, 23, 801–812, doi:10.1007/BF00021535.
[59]  Benchabane, M.; Schlüter, U.; Vorster, J.; Goulet, M.-C.; Michaud, D. Plant cystatins. Biochimie 2010, 92, 1657–1666, doi:10.1016/j.biochi.2010.06.006.
[60]  Kiggundu, A.; Goulet, M.-C.; Goulet, C.; Dubuc, J.-F.; Rivard, D.; Benchabane, M.; Pépin, G.; van der Vyver, C.; Kunert, K.; Michaud, D. Modulating the proteinase inhibitory profile of a plant cystatin by single mutations at positively selected amino acid sites. Plant J. 2006, 48, 403–413, doi:10.1111/j.1365-313X.2006.02878.x.
[61]  Goulet, M.-C.; Dallaire, C.; Vaillancourt, L.-P.; Khalf, M.; Badri, A.M.; Preradov, A.; Duceppe, M.-O.; Goulet, C.; Cloutier, C.; Michaud, D. Tailoring the specificity of a plant cystatin toward herbivorous insect digestive cysteine proteases by single mutations at positively selected amino acid sites. Plant Physiol. 2008, 146, 1010–1019, doi:10.1104/pp.108.115741.
[62]  Walsh, T.A.; Strickland, J.A. Proteolysis of the 85-kilodalton crystalline cysteine proteinase inhibitor from potato releases functional cystatin domains. Plant Physiol. 1993, 103, 1227–1234, doi:10.1104/pp.103.4.1227. 8290629
[63]  de Maagd, R.A.; Kwa, M.S.G.; van der Klei, H.; Yamamoto, T.; Schipper, B.; Vlak, J.M.; Stiekema, W.J.; Bosch, D. Domain III substitution in Bacillus thuringiensis delta-endotoxin Cry1A(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl. Environ. Microbiol. 1996, 62, 1537–1543. 8633853
[64]  Walters, F.S.; deFontes, C.M.; Hart, H.; Warren, G.W.; Chen, J.S. Lepidopteran-active variable-region sequence imparts Coleopteran activity in eCry3.1Ab, an engineered Bacillus thuringiensis hybrid insecticidal protein. Appl. Environ. Microbiol. 2010, 76, 3082–3088, doi:10.1128/AEM.00155-10. 20305020
[65]  de Maagd, R.A.; Weemen-Hendriks, M.; Stiekema, W.J.; Bosch, D. Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1–Cry1C hybrids. Appl. Environ. Microbiol. 2000, 66, 1559–1563, doi:10.1128/AEM.66.4.1559-1563.2000.
[66]  Naimov, S.; Weemen-Hendriks, M.; Dukiandjiev, S.; de Maagd, R.A. Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle. Appl. Environ. Microbiol. 2001, 67, 5328–5330, doi:10.1128/AEM.67.11.5328-5330.2001.
[67]  Karlova, R.; Weemen-Hendriks, M.; Naimov, S.; Ceron, J.; Dukiandjiev, S.; de Maagd, R.A. Bacillus thuringiensis ?-endotoxin Cry1Ac domain III enhances activity against Heliothis virescens in some, but not all Cry1–Cry1Ac hybrids. J. Invertebr. Pathol. 2005, 88, 169–172, doi:10.1016/j.jip.2004.11.004.
[68]  Singh, P.K.; Kumar, M.; Chaturvedi, C.P.; Yadav, D.; Tuli, R. Development of a hybrid ?-endotoxin and its expression in tobacco and cotton for control of a polyphagous pest Spodoptera litura. Transg. Res. 2004, 13, 397–410, doi:10.1007/s11248-004-4908-7.
[69]  Lopez-Pazos, S.A.; Rojas Arias, A.C.; Ospina, S.A.; Ceron, J. Activity of Bacillus thuringiensis hybrid protein against a lepidopteran and a coleopteran pest. FEMS Microbiol. Lett. 2010, 302, 93–98, doi:10.1111/j.1574-6968.2009.01821.x.
[70]  Inanaga, H.; Kobayashi, D.; Kouzuma, Y.; Aoki-Yasunaga, C.; Kimura, M. Protein engineering of novel proteinase inhibitors and their effects on the growth of Spodoptera exigua larvae. Biosci. Biotechnol. Biochem. 2001, 65, 2259–2264, doi:10.1271/bbb.65.2259.
[71]  Mehlo, L.; Gahakwa, D.; Nghia, P.T.; Loc, N.T.; Capell, T.; Gatehouse, J.A.; Gatehouse, A.M.R.; Christou, P. An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proc. Natl. Acad. Sci. USA 2005, 102, 7812–7816, doi:10.1073/pnas.0502871102. 15908504
[72]  Xia, L.; Long, X.; Ding, X.; Zhang, Y. Increase in insecticidal toxicity by fusion of the cry1Ac gene from Bacillus thuringiensis with the neurotoxin gene hwtx-I. Curr. Microbiol. 2009, 58, 52–57, doi:10.1007/s00284-008-9265-y. 18953606
[73]  Xia, L.; Zheng, Z.; Ding, X.; Huang, F. The expression of a recombinant cry1Ac gene with subtilisin-like protease CDEP2 gene in acrystalliferous Bacillus thuringiensis by Red/ET homologous recombination. Curr. Microbiol. 2009, 59, 386–392, doi:10.1007/s00284-009-9449-0.
[74]  Seo, J.H.; Yeo, J.S.; Cha, H.J. Baculoviral polyhedrin—Bacillus thuringiensis toxin fusion protein: A protein-based bio-insecticide expressed in Escherichia coli. Biotechnol. Bioeng. 2005, 92, 166–172, doi:10.1002/bit.20592.
[75]  Cao, C.-W.; Liu, G.-F.; Wang, Z.-Y.; Yan, S.-C.; Ma, L.; Yang, C.-P. Response of the gypsy moth, Lymantria dispar to transgenic poplar, Populus simonii ×P. nigra, expressing fusion protein gene of the spider insecticidal peptide and Bt-toxin C-peptide. J. Insect Sci. 2010, 10, doi:10.1673/031.010.20001.
[76]  Zheng, S.S.; An, C.C.; Li, Q.R.; Chen, Z.L. Study of transferring fusion protein gene of the spider insecticidal peptide and Bt-toxin C-peptide into cotton. Cotton Sci. 2002, 14, 348–351.
[77]  Fan, H.J.; Hu, C.X.; Wang, Z.Y.; Liu, G.F. Resistance of transgenic Xiaohei poplars with fusion protein gene of the spider insecticidal peptide and Bt-toxin C-peptide to Clostera anachoreta (Fabricius) (Lepidoptera; Notodontidae). Acta Entomol. Sin. 2006, 49, 780–785.
[78]  Wang, Z.Y.; Xue, Z.; Fang, H.J.; Zhan, Y.G. Resistance of transgenic Betula platyphylla to the defoliator Lymantria dispar. Sci. Silvae Sci. 2007, 43, 116–120.
[79]  Fitches, E.; Audsley, N.; Gatehouse, J.A.; Edwards, J.P. Fusion proteins containing neuropeptides as novel insect control agents: Snowdrop lectin delivers fused allatostatin to insect haemolymph following oral ingestion. Insect Biochem. Mol. Biol. 2002, 32, 1653–1661, doi:10.1016/S0965-1748(02)00105-4.
[80]  Fitches, E.; Edwards, M.G.; Mee, C.; Grishin, E.; Gatehouse, A.M.R.; Edwards, J.P.; Gatehouse, J.A. Fusion proteins containing insect-specific toxins as pest control agents: Snowdrop lectin delivers fused insecticidal spider venom toxin to insect haemolymph following oral ingestion. J. Insect Physiol. 2004, 50, 61–71, doi:10.1016/j.jinsphys.2003.09.010.
[81]  Fitches, E.C.; Bell, H.A.; Powell, M.E.; Back, E.; Sargiotti, C.; Weaver, R.J.; Gatehouse, J.A. Insecticidal activity of scorpion toxin (ButalT) and snowdrop lectin (GNA) containing fusion proteins towards pest species of different orders. Pest Manag. Sci. 2010, 66, 74–83, doi:10.1002/ps.1833.
[82]  Trung, N.P.; Fitches, E.; Gatehouse, J.A. A fusion protein containing a lepidopteran-specific toxin from the South Indian red scorpion (Mesobuthus tamulus) and snowdrop lectin shows oral toxicity to target insects. BMC Biotechnol. 2006, 6, doi:10.1186/1472-6750-6-18.
[83]  Down, R.E.; Fitches, E.C.; Wiles, D.P.; Corti, P.; Bell, H.A.; Gatehouse, J.A.; Edwards, J.P. Insecticidal spider venom toxin fused to snowdrop lectin is toxic to the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae) and the rice brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Pest Manag. Sci. 2006, 62, 77–85, doi:10.1002/ps.1119. 16206236
[84]  Zhu-Salzman, K.; Ahn, J.-E.; Salzman, R.A.; Koiwa, H.; Shade, H.; Balfe, S. Fusion of a soybean cysteine protease inhibitor and a legume lectin enhances anti-insect activity synergistically. Agric. For. Entomol. 2003, 5, 317–323, doi:10.1046/j.1461-9563.2003.00194.x.
[85]  Outchkourov, N.S.; de Kogel, W.J.; Wiegers, G.L.; Abrahamson, M.; Jongsma, M.A. Engineered multidomain cysteine protease inhibitors yield resistance against western flower thrips (Frankliniella occidentalis) in greenhouse trials. Plant Biotechnol. J. 2004, 2, 449–458, doi:10.1111/j.1467-7652.2004.00089.x.
[86]  Brunelle, F.; Girard, C.; Cloutier, C.; Michaud, D. A hybrid, broad-spectrum inhibitor of Colorado potato beetle aspartate and cysteine digestive proteinases. Arch. Insect Biochem. Physiol. 2005, 60, 20–31, doi:10.1002/arch.20078.
[87]  Benchabane, M.; Goulet, M.-C.; Dallaire, C.; C?té, P.-L.; Michaud, D. Hybrid protease inhibitors for pest and pathogen control–a functional cost for the fusion partners? Plant Physiol. Biochem. 2008, 46, 701–708, doi:10.1016/j.plaphy.2008.04.005.
[88]  Michaud, D. Avoiding protease-mediated resistance in herbivorous pests. Trends Biotechnol. 1997, 15, 4–6, doi:10.1016/S0167-7799(96)10072-X.
[89]  Tajne, S.; Sanam, R.; Gundla, R.; Gandhi, N.S.; Mancera, R.L.; Boddupally, D.; Vudem, D.R.; Khareedu, V.R. Molecular modeling of Bt Cry1Ac (DI-DII)-ASAL (Allium sativum lectin)-fusion protein and its interaction with aminopeptidase N (APN) receptor of Manduca sexta. J. Mol. Graph. Model. 2012, 33, 61–76, doi:10.1016/j.jmgm.2011.11.001.
[90]  Upadhyay, S.K.; Saurabh, S.; Rai, P.; Singh, R.; Chandrashekar, K.; Verma, P.C.; Singh, P.K.; Tuli, R. SUMO fusion facilitates expression and purification of garlic leaf lectin but modifies some of its properties. J. Biotechnol. 2010, 146, 1–8, doi:10.1016/j.jbiotec.2010.01.013.
[91]  Arai, R.; Ueda, H.; Kitayama, A.; Kamiya, N.; Nagamune, T. Design of the linkers which effectively separate domains of a bifunctional fusion protein. Prot. Eng. 2001, 14, 529–532, doi:10.1093/protein/14.8.529.
[92]  Wriggers, W.; Chakravarty, S.; Jennings, P.A. Control of protein functional dynamics by peptide linkers. Biopolymers 2005, 80, 736–746, doi:10.1002/bip.20291.
[93]  Crasto, C.J.; Feng, J. LINKER: A program to generate linker sequences for fusion proteins. Prot. Eng. 2000, 13, 309–312, doi:10.1093/protein/13.5.309.
[94]  Xue, F.; Gu, Z.; Feng, J. LINKER: A web server to generate peptide sequences with extended conformation. Nucl. Acids Res. 2004, 32, W562–W565, doi:10.1093/nar/gkh422.
[95]  Kavoosi, M.; Creagh, A.L.; Kilburn, D.G.; Haynes, C.A. Strategy for selecting and characterizing linker peptides for CBM9-tagged fusion proteins expressed in Escherichia coli. Biotechnol. Bioeng. 2007, 98, 599–610, doi:10.1002/bit.21396.
[96]  Rawlings, N.D.; Morton, F.R.; Kok, C.Y.; Kong, J.; Barrett, A.J. MEROPS: The peptidase database. Nucleic.. Acids Res. 2006, 36, D320–D325.
[97]  George, R.A.; Heringa, J. An analysis of protein domain linkers: Their classification and role in protein folding. Prot. Eng. 2003, 15, 871–879.
[98]  Arai, R.; Wriggers, W.; Nishikawa, Y.; Nagamune, T.; Fujisawa, T. Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering. Proteins 2004, 57, 829–838, doi:10.1002/prot.20244.
[99]  Peschen, D.; Li, H.-P.; Fischer, R.; Kreuzaler, F.; Liao, Y.-C. Fusion proteins comprising a Fusarium-specific antibody linked to antifungal peptides protect plants against a fungal pathogen. Nat. Biotechnol. 2004, 22, 732–738, doi:10.1038/nbt970.
[100]  Dandekar, A.M.; Gouran, H.; Ibanez, A.M.; Uratsu, S.L.; Agüero, C.B.; McFarland, S.; Borhani, Y.; Feldstein, P.A.; Bruening, G.; Nascimento, R.; et al. An engineered innate immune defense protects grapevines from Pierce disease. Proc. Natl. Acad. Sci. USA 2012, 109, 3721–3725, doi:10.1073/pnas.1116027109. 22355130
[101]  Urwin, P.E.; McPherson, M.J.; Atkinson, H.J. Enhanced transgenic plant resistance to nematodes by dual proteinase inhibitor constructs. Planta 1998, 204, 472–479, doi:10.1007/s004250050281.
[102]  Lu, P.; Feng, M.G. Bifunctional enhancement of a beta-glucanase-xylanase fusion enzyme by optimization of peptide linkers. Appl. Microbiol. Biotechnol. 2008, 79, 579–587, doi:10.1007/s00253-008-1468-4.
[103]  Zhao, H.L.; Yao, X.Q.; Xue, C.; Wang, Y.; Xiong, X.H.; Liu, Z.M. Increasing the homogeneity, stability and activity of human serum albumin and interferon-alpha 2b fusion protein by linker engineering. Protein Expr. Purif. 2008, 61, 73–77, doi:10.1016/j.pep.2008.04.013.
[104]  Sauer, J.; Christensen, T.; Frandsen, T.P.; Mirgorodskaya, E.; McGuire, K.A.; Driguez, H.; Roepstorff, P.; Sigurskjold, B.W.; Svensson, B. Stability and function of interdomain linker variants of glucoamylase 1 from Aspergillus niger. Biochemistry 2001, 40, 9336–9346, doi:10.1021/bi010515i. 11478902
[105]  Wu, Y.J.; Fan, C.Y.; Li, Y.K. Protein purification involving a unique auto-cleavage feature of a repeated EAAAK peptide. J. Biosci. Bioeng. 2009, 108, S63–S63.
[106]  Maia, I.G.; Seron, K.; Haenni, A.L.; Bernardi, F. Gene expression from viral RNA genomes. Plant Mol. Biol. 1996, 32, 367–391, doi:10.1007/BF00039391.
[107]  Dougherty, W.G.; Semler, B.L. Expression of virus-encoded proteinases: Functional and structural similarities with cellular enzymes. Microbiol. Rev. 1993, 57, 781–822. 8302216
[108]  Adams, M.J.; Antoniw, J.F.; Beaudoin, F. Overview and analysis of the polyprotein cleavage sites in the family Potyviridae. Mol. Plant Pathol. 2005, 6, 471–487, doi:10.1111/j.1364-3703.2005.00296.x.
[109]  Marcos, J.F.; Beachy, R.N. In vitro characterization of a cassette to accumulate multiple proteins through synthesis of a self-processing polypeptide. Plant Mol. Biol. 1994, 24, 495–503, doi:10.1007/BF00024117.
[110]  Saunders, K.; Sainsbury, F.; Lomonossoff, G.P. Efficient generation of cowpea mosaic virus empty virus-like particles by the proteolytic processing of precursors in insect cells and plants. Virology 2009, 393, 329–337, doi:10.1016/j.virol.2009.08.023.
[111]  Carrington, J.; Dougherty, W. Processing of the tobacco etch virus 49K protease requires autoproteolysis. Virology 1987, 160, 355–362, doi:10.1016/0042-6822(87)90006-7.
[112]  Goldbach, R.W.; Wellink, J. Comovirus: Molecular Biology and Replication. In The Plant Viruses; Harrison, B.D., Murrant, A.F., Eds.; Plenum Press: New York, NY, USA, 1996; Volume 5, pp. 35–76.
[113]  Carrington, J.; Dougherty, W. A viral cleavage site cassette: Identification of amino acid sequences required for tobacco etch virus polyprotein processing. Proc. Natl. Acad. Sci. USA 1988, 85, 3391–3395, doi:10.1073/pnas.85.10.3391.
[114]  Phan, J.; Zdanov, A.; Evdokimov, A.G.; Tropea, J.E.; Peters, H.K., III; Kapust, R.B.; Li, M.; Wlodawer, A.; Waugh, D.S. Structural basis for the substrate specificity of tobacco etch virus protease. J. Biol. Chem. 2002, 277, 50564–50572, doi:10.1074/jbc.M207224200. 12377789
[115]  von Bodman, S.B.; Domier, L.L.; Farrand, S.K. Expression of multiple eukaryotic genes from a single promoter in Nicotiana. Bio/Technology 1995, 13, 587–591, doi:10.1038/nbt0695-587. 9634798
[116]  Bedoya, L.; Martinez, F.; Rubio, L.; Daros, J.-A. Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector. J. Biotechnol. 2010, 150, 268–275. 20728479
[117]  Dasgupta, S.; Collins, G.B.; Hunt, A.G. Co-ordinated expression of multiple enzymes in different subcellular compartments in plants. Plant J. 1998, 16, 107–116, doi:10.1046/j.1365-313x.1998.00255.x.
[118]  Marcos, J.F.; Beachy, R.N. Transgenic accumulation of two plant virus coat proteins on a single self-processing polypeptide. J. Gen. Virol. 1997, 78, 1771–1778. 9225054
[119]  Ceriani, M.F.; Marcos, J.F.; Hopp, H.E.; Beachy, R.N. Simultaneous accumulation of multiple viral coat proteins from a TEV-NIa based expression vector. Plant Mol. Biol. 1998, 36, 239–248, doi:10.1023/A:1005952001774.
[120]  Powell, W.A.; Catranis, C.M.; Maynard, C.A. Design of self-processing antimicrobial peptides for plant protection. Lett. Appl. Microbiol. 2000, 31, 163–168. 10972721
[121]  Liang, H.; Gao, H.; Maynard, C.A.; Powell, W.A. Expression of a self-processing, pathogen resistance-enhancing gene construct in Arabidopsis. Biotechnol. Lett. 2005, 27, 435–442, doi:10.1007/s10529-005-1884-9.
[122]  Zhang, B.; Rapolu, M.; Huang, L.; Su, W.W. Coordinate expression of multiple proteins in plant cells by exploiting endogenous kex2p-like protease activity. Plant Biotechnol. J. 2011, 9, 970–981, doi:10.1111/j.1467-7652.2011.00607.x.
[123]  Fran?ois, I.E.J.A.; Dwyer, G.I.; De Bolle, M.F.C.; Goderis, I.J.W.M.; van Hemelrijck, W.; Proost, P.; Wouters, P.; Broekaert, W.F.; Cammue, B.P.A. Processing in transgenic Arabidopsis thaliana plants of polyproteins with linker peptide variants derived from the Impatiens balsamina antimicrobial polyprotein precursor. Plant Physiol. Biochem. 2002, 40, 871–879, doi:10.1016/S0981-9428(02)01440-7.
[124]  Fran?ois, I.E.J.A.; de Bolle, M.F.C.; Dwyer, G.; Goderis, I.J.W.M.; Woutors, P.F.J.; Verhaert, P.D.; Proost, P.; Schaaper, W.M.M.; Cammue, B.P.A.; Broekaert, W.F. Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. Plant Physiol. 2002, 128, 1346–1358, doi:10.1104/pp.010794.
[125]  Fran?ois, I.E.J.A.; van Hemelrijck, W.; Aerts, A.M.; Wouters, P.F.J.; Proost, P.; Broekaert, W.F.; Cammue, B.P.A. Processing in Arabidopsis thaliana of a heterologous polyprotein resulting in differential targeting of the individual plant defensins. Plant Sci. 2004, 166, 113–121, doi:10.1016/j.plantsci.2003.09.001.
[126]  Walker, J.M.; Vierstra, R.D. A ubiquitin-based vector for the co-ordinate synthesis of multiple proteins in plants. Plant Biotechnol. J. 2007, 5, 413–421, doi:10.1111/j.1467-7652.2007.00250.x.
[127]  Hunt, A.G.; Maiti, I.B. Strategies for expressing multiple foreign genes in plants as polycistronic constructs. In Vitro Cell. Dev. Biol. Plant 2001, 37, 313–320, doi:10.1007/s11627-001-0056-4.
[128]  Luke, G.A. Translating 2A Research into Practice. In Innovations in Biotechnology; Agbo, E.C., Ed.; InTech Open: Rijeka, Croatia, 2012; pp. 165–186.
[129]  Martinez-Salas, E. Internal ribosome entry site biology and its use in expression vectors. Curr. Opin. Biotechnol. 1999, 10, 458–464, doi:10.1016/S0958-1669(99)00010-5.
[130]  Toth, R.L.; Chapman, S.; Carr, F.; Santa Cruz, S. A novel strategy for the expression of foreign genes from plant virus vectors. FEBS Lett. 2001, 489, 215–219, doi:10.1016/S0014-5793(01)02091-9.
[131]  Dorokhov, Y.L.; Skulachev, M.V.; Ivanov, P.A.; Zvereva, S.D.; Tjulkina, L.G.; Merits, A.; Gleba, Y.Y.; Hohn, T.; Atabekov, J.G. Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry. Proc. Natl. Acad. Sci. USA 2002, 99, 5301–5306, doi:10.1073/pnas.082107599. 11959981
[132]  Groppelli, E.; Belsham, G.J.; Roberts, L.O. Identification of minimal sequences of the Rhopalosiphum padi virus 5' untranslated region required for internal initiation of protein synthesis in mammalian, plant and insect translation systems. J. Gen. Virol. 2007, 88, 1583–1588, doi:10.1099/vir.0.82682-0.
[133]  Urwin, P.E.; Zubko, E.I.; Atkinson, H.J. The biotechnological application and limitation of IRES to deliver multiple defence genes to plant pathogens. Physiol. Mol. Plant Pathol. 2002, 61, 103–108.
[134]  Ali, Z.; Schumacher, H.M.; Heine-Dobbernack, E.; El-Banna, A.; Hafeez, F.Y.; Jacobsen, H.J.; Kiesecker, H. Dicistronic binary vector system—A versatile tool for gene expression studies in cell cultures and plants. J. Biotechnol. 2010, 145, 9–16, doi:10.1016/j.jbiotec.2009.10.002. 19835918
[135]  El-Banna, A.; Hajirezaei, M.R.; Wissing, J.; Ali, Z.; Vaas, L.; Heine-Dobbernack, E.; Jacobsen, H.J.; Schumacher, H.M.; Kiesecker, H. Over-expression of PR-10a leads to increased salt and osmotic tolerance in potato cell cultures. J. Biotechnol. 2010, 150, 277–287. 20854851
[136]  Urwin, P.E.; Yi, L.; Martin, H.; Atkinson, H.J.; Gilmartin, P.M. Functional characterization of the EMCV IRES in plants. Plant J. 2000, 24, 583–589, doi:10.1046/j.1365-313x.2000.00904.x.
[137]  Ha, S.-H.; Liang, Y.S.; Jung, H.; Ahn, M.-J.; Suh, S.-C.; Kweon, S.-J.; Kim, D.-H.; Kim, Y.-M.; Kim, J.-K. Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnol. J. 2010, 8, 928–938, doi:10.1111/j.1467-7652.2010.00543.x.
[138]  de Felipe, P.; Luke, G.A.; Hughes, L.E.; Gani, D.; Halpin, C.; Ryan, M.D. E unum pluribus: Multiple proteins from a self-processing polyprotein. Trends Biotechnol. 2006, 24, 68–75, doi:10.1016/j.tibtech.2005.12.006.
[139]  Donnelly, M.L.L.; Luke, G.; Mehrotra, A.; Li, X.; Hughes, L.E.; Gani, D.; Ryan, M.D. Analysis of the aphthovirus 2A/2B polyprotein “cleavage” mechanism indicates not a proteolytic reaction, but a novel translational effect: A putative ribosomal “skip”. J. Gen. Virol. 2001, 82, 1013–1025. 11297676
[140]  Sharma, P.; Yan, F.; Doronina, V.A.; Escuin-Ordinas, H.; Ryan, M.D.; Brown, J.D. 2A peptides provide distinct solutions to driving stop-carry on translational recoding. Nucl. Acids Res. 2012, 40, 3143–3151, doi:10.1093/nar/gkr1176.
[141]  Halpin, C.; Cooke, S.E.; Barakate, A.; El Amrani, A.; Ryan, M.D. Self-processing 2A-polyproteins—A system for co-ordinate expression of multiple proteins in transgenic plants. Plant J. 1999, 17, 453–459, doi:10.1046/j.1365-313X.1999.00394.x.
[142]  Ma, C.; Mitra, A. Expressing multiple genes in a single open reading frame with the 2A region of foot-and-mouth disease virus as a linker. Mol. Breed. 2002, 9, 191–199, doi:10.1023/A:1019760127368.
[143]  Smolenska, L.; Roberts, I.M.; Learmonth, D.; Porter, A.J.; Harris, W.J.; Michael, T.; Wilson, A.; Santa Cruz, S. Production of a functional single chain antibody attached to the surface of a plant virus. FEBS Lett. 1998, 441, 379–382, doi:10.1016/S0014-5793(98)01586-5.
[144]  Sainsbury, F.; Lavoie, P.-O.; D’Aoust, M.-A.; Vézina, L.-P.; Lomonossoff, G.P. Expression of multiple proteins using full-length and deleted versions of cowpea mosaic virus RNA-2. Plant Biotechnol. J. 2008, 6, 82–92. 17986176
[145]  Marconi, G.; Albertini, E.; Barone, P.; DeMarchis, F.; Lico, C.; Marusic, C.; Rutili, D.; Veronesi, F.; Porceddu, A. In planta production of two peptides of the Classical Swine Fever Virus (CSFV) E2 glycoprotein fused to the coat protein of potato virus X. BMC Biotechnol. 2006, 6, doi:10.1186/1472-6750-6-29.
[146]  Ralley, L.; Enfissi, E.M.A.; Misawa, N.; Schuch, W.; Bramley, P.M.; Fraser, P.D. Metabolic engineering of ketocarotenoid formation in higher plants. Plant J. 2004, 39, 477–486, doi:10.1111/j.1365-313X.2004.02151.x.
[147]  Randall, J.; Sutton, D.; Ghoshroy, S.; Bagga, S.; Kemp, J.D. Co-ordinate expression of β- and ?-zeins in transgenic tobacco. Plant Sci. 2004, 167, 367–372, doi:10.1016/j.plantsci.2004.04.005.
[148]  Kwon, S.-J.; Hwang, E.-W.; Kwon, H.-B. Genetic engineering of drought resistant potato plants by co-introduction of genes encoding trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase of Zygosaccharomyces rouxii. Kor. J. Genet. 2004, 26, 199–206.
[149]  Geu-Flores, F.; Olsen, C.E.; Halkier, B.A. Towards engineering glucosinolates into non-cruciferous plants. Planta 2009, 229, 261–270, doi:10.1007/s00425-008-0825-y.
[150]  Fang, J.; Qian, J.J.; Yi, S.; Harding, T.C.; Tu, G.H.; VanRoey, M.; Jooss, K. Stable antibody expression at therapeutic levels using the 2A peptide. Nat. Biotechnol. 2005, 23, 584–590, doi:10.1038/nbt1087.
[151]  Fang, J.; Yi, S.; Simmons, A.; Tu, G.; Nguyen, M.; Harding, T.C.; VanRoey, M.; Jooss, K. An antibody delivery system for regulated expression of therapeutic levels of monoclonal antibodies in vivo. Mol. Ther. 2007, 15, 1153–1159. 17375065
[152]  Luke, G.; Escuin, H.; de Filipe, P.; Ryan, M. 2A to the fore-research, technology and applications. Biotechnol. Genet. Eng. Rev. 2010, 26, 223–260. 21415883
[153]  El Amrani, A.; Barakate, A.; Askari, B.M.; Li, X.; Roberts, A.G.; Ryan, M.D.; Halpin, C. Coordinate expression and independent subcellular targeting of multiple proteins from a single transgene. Plant Physiol. 2004, 135, 16–24, doi:10.1104/pp.103.032649.
[154]  Szymczak, A.L.; Workman, C.J.; Wang, Y.; Vignali, K.M.; Dilioglou, S.; Vanin, E.F.; Vignali, D.A.A. Correction of multi-gene deficiency in vivo using a single “self-cleaving” 2A peptide-based retroviral vector. Nat. Biotechnol. 2004, 22, 589–594, doi:10.1038/nbt957.
[155]  de Felipe, P.; Luke, G.A.; Brown, J.D.; Ryan, M.D. Inhibition of 2A-mediated “cleavage” of certain artificial polyproteins bearing N-terminal signal sequences. Biotechnol. J. 2010, 5, 213–223, doi:10.1002/biot.200900134. 19946875
[156]  Schlüter, U.; Benchabane, M.; Munger, A.; Kiggundu, A.; Vorster, J.; Goulet, M.-C.; Cloutier, C.; Michaud, D. Recombinant protease inhibitors for herbivore pest control: A multitrophic perspective. J. Exp. Bot. 2010, 61, 4169–4183, doi:10.1093/jxb/erq166.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133