In cultures of primary rat hepatocytes, apoptosis occurred after application of 20 ng/mL tumor necrosis factor alpha (TNF-α). However, this was only in the presence of 200 ng/mL of the transcriptional inhibitor actinomycin D (ActD). This toxic effect was completely prevented in the presence of 25 μg/mL soluble TNF-α receptor I (sTNFR I) in the supernatant of hepatocyte cell cultures. Apoptosis also occurred after application of 12.5 μmol/L ochratoxin A (OTA). However, that was not prevented by up to 500 μg/mL sTNFR I, indicating that TNF-α/TNFR I is not involved in OTA mediated apoptosis in hepatocytes. The antioxidative flavanolignan silibinin in doses from 130 to 260 μmol/L prevented chromatin condensation, caspase-3 activation, and apoptotic DNA fragmentation that were induced by OTA, by 10 mmol/L hydrogen peroxide (H2O2) and by ultraviolet (UV-C) light (50 mJ/cm2), respectively. To achieve protection by silibinin, the drug was applied to the cell cultures for 2 h in advance. OTA stimulated lipid peroxidation on cultured immortalized rat liver HPCT cells, as was revealed by malondialdehyde (MDA) production. Lipid peroxidation occurred further by H2O2 and ActD/TNF-α incubation. These reactions were also suppressed by silibinin pretreatment. We conclude that the anti-apoptotic activity of silibinin against OTA, H2O2 and ActD/ TNF-α is caused in vitro by the antioxidative effects of the flavanolignan. Furthermore, cytotoxicity of the pro-apoptotic toxins was revealed by MTT-test. When applied separately, ActD and TNF-α showed no cytotoxic effects after 24 h, but were cytotoxic if applied in combination. The used concentrations of OTA, H2O2 and the dose of UV-C caused a substantial decrease in viability within 36 h that was prevented mostly by silibinin. We conclude that silibinin is a potent protective compound against apoptosis and cytotoxicity caused by OTA and the investigated compounds.
References
[1]
Lawen, A. Apoptosis-An introduction. Bioessays 2003, 25, 888–896, doi:10.1002/bies.10329.
Riedl, S.J.; Shi, Y. Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell Biol. 2004, 5, 897–907, doi:10.1038/nrm1496.
[4]
Petzinger, E.; Ziegler, K. Ochratoxin A from a toxicological perspective. J. Vet. Pharmacol. Ther. 2000, 23, 91–98, doi:10.1046/j.1365-2885.2000.00244.x.
[5]
Ringot, D.; Chango, A.; Schneider, Y.J.; Larondelle, Y. Toxicokinetics and toxicodynamics of ochratoxin A, an update. Chem. Biol. Interact. 2006, 159, 18–46, doi:10.1016/j.cbi.2005.10.106.
[6]
Aydin, G.; Oz?elik, N.; Ci?ek, E.; Soy?z, M. Histopathologic changes in liver and renal tissues induced by Ochratoxin A and melatonin in rats. Hum. Exp. Toxicol. 2003, 22, 383–391.
[7]
Atroshi, F.; Biese, I.; Saloniemi, H.; Ali-Vehmas, T.; Saari, S.; Rizzo, A.; Veijalainen, P. Significance of apoptosis and its relationship to antioxidants after ochratoxin A administration in mice. J. Pharm. Pharm. Sci. 2000, 3, 281–291.
[8]
Chopra, M.; Link, P.; Michels, C.; Schrenk, D. Characterization of ochratoxin A-induced apoptosis in primary rat hepatocytes. Cell Biol. Toxicol. 2010, 26, 239–254, doi:10.1007/s10565-009-9131-0.
[9]
Essid, E.; Petzinger, E. Silibinin pretreatment protects against Ochratoxin A-mediated apoptosis in primary rat hepatocytes. Mycotoxin Res. 2011, 27, 167–176, doi:10.1007/s12550-011-0092-9.
[10]
Al-Anati, L.; Essid, E.; Stenius, U.; Beuerlein, K.; Schuh, K.; Petzinger, E. Differential cell sensitivity between OTA and LPS upon Releasing TNF-alpha. Toxins 2010, 2, 1279–1299, doi:10.3390/toxins2061279.
[11]
Leist, M.; Gantner, F.; Jilg, S.; Wendel, A. Activation of the 55 kDa TNF receptor is necessary and sufficient for TNF-induced liver failure, hepatocyte apoptosis, and nitrite releas. J. Immunol. 1995, 154, 1307–1316.
[12]
Nagata, S. Apoptosis by death factor. Cell 1997, 88, 355–365, doi:10.1016/S0092-8674(00)81874-7.
[13]
Micheau, O.; Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003, 114, 181–190, doi:10.1016/S0092-8674(03)00521-X.
[14]
Ding, W.X.; Yin, X.M. Dissection of the multiple mechanisms of TNF-alpha-induced apoptosis in liver injury. J. Cell. Mol. Med. 2004, 8, 445–454, doi:10.1111/j.1582-4934.2004.tb00469.x.
[15]
Leist, M.; Gantner, F.; Bohlinger, I.; Germann, P.G.; Tiegs, G.; Wendel, A. Murine hepatocyte apoptosis induced in vitro and in vivo by TNF-alpha requires transcriptional arrest. J. Immunol. 1994, 153, 1778–1788.
[16]
Hu, C.; Han, J.Q.; Xu, Z.; Xiu, H.M.; Liu, J.D.; Hao, Y. Effects of baicalin on hepatocyte apoptosis induced by TNF-alpha and act D in rats (In Chinese). China J. Chin. Mater. Med. 2001, 26, 124–127.
[17]
Bindoli, A.; Cavallini, L.; Siliprandi, N. Inhibitory action of silymarin of lipid peroxide formation in rat liver mitochondria and microsomes. Biochem. Pharmacol. 1977, 26, 2405–2409, doi:10.1016/0006-2952(77)90449-X.
[18]
Kiruthiga, P.V.; Shafreen, R.B.; Pandian, S.K.; Devi, K.P. Silymarin protection against major reactive oxygen species released by environmental toxins: Exogenous H2O2 exposure in erythrocytes. Basic Clin. Pharmacol. Toxicol. 2007, 100, 414–419, doi:10.1111/j.1742-7843.2007.00069.x.
[19]
Asghar, Z.; Masood, Z. Evaluation of antioxidant properties of silymarin and its potential to inhibit peroxyl radicals in vitro. Pak. J. Pharm. Sci. 2008, 21, 249–254.
[20]
Al-Anati, L.; Essid, E.; Reinehr, R.; Petzinger, E. Silibinin protects OTA-mediated TNF-alpha release from perfused rat livers and isolated rat Kupffer cells. Mol. Nutr. Food Res. 2009, 53, 460–466, doi:10.1002/mnfr.200800110.
[21]
Pook, S.H.; Toh, C.K.; Mahendran, R. Combination of thiol antioxidant Silibinin with Brostallicin is associated with increase in the anti-apoptotic protein Bcl-2 and decrease in caspase 3 activity. Cancer Lett. 2006, 238, 146–152, doi:10.1016/j.canlet.2005.07.002.
[22]
Omar, R.F.; Hasinoff, B.B.; Mejilla, F.; Rahimtula, A.D. Mechanism of ochratoxin A stimulated lipid peroxidation. Biochem. Pharmacol. 1990, 40, 1183–1191, doi:10.1016/0006-2952(90)90382-U.
[23]
Gagliano, N.; Donne, I.D.; Torri, C.; Migliori, M.; Grizzi, F.; Milzani, A.; Filippi, C.; Annoni, G.; Colombo, P.; Costa, F.; et al. Early cytotoxic effects of ochratoxin A in rat liver: A morphological, biochemical and molecular study. Toxicology 2006, 225, 214–224, doi:10.1016/j.tox.2006.06.004.
[24]
Marin-Kuan, M.; Nestler, S.; Verguet, C.; Bezen?on, C.; Piguet, D.; Mansourian, R.; Holzwarth, J.; Grigorov, M.; Delatour, T.; Mantle, P.; et al. A toxicogenomics approach to identify new plausible epigenetic mechanisms of ochratoxin a carcinogenicity in rat. Toxicol. Sci. 2006, 89, 120–134.
[25]
Cavin, C.; Delatour, T.; Marin-Kuan, M.; Holzh?user, D.; Higgins, L.; Bezen?on, C.; Guignard, G.; Junod, S.; Richoz-Payot, J.; Gremaud, E.; et al. Reduction in antioxidant defenses may contribute to ochratoxin A toxicity and carcinogenicity. Toxicol. Sci. 2007, 96, 30–39.
Kamat, J.P.; Devasagayam, T.P.; Priyadarsini, K.I.; Mohan, H.; Mittal, J.P. Oxidative damage induced by the fullerene C60 on photosensitization in rat liver microsomes. Chem. Biol. Interact. 1998, 114, 145–159, doi:10.1016/S0009-2797(98)00047-7.
[28]
Svobodová, A.R.; Galandáková, A.; Sianská, J.; Dole?al, D.; Ulrichová, J.; Vostálová, J. Acute exposure to solar simulated ultraviolet radiation affects oxidative stress-related biomarkers in skin, liver and blood of hairless mice. Biol. Pharm. Bull. 2011, 34, 471–479, doi:10.1248/bpb.34.471.
[29]
Manna, S.K.; Mukhopadhyay, A.; Van, N.T.; Aggarwal, B.B. Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis. J. Immunol. 1999, 163, 6800–6809.
[30]
Saller, R.; Meier, R.; Brignoli, R. The use of silymarin in the treatment of liver diseases. Drugs 2001, 61, 2035–2063, doi:10.2165/00003495-200161140-00003.
[31]
Schümann, J.; Prockl, J.; Kiemer, A.K.; Vollmar, A.M.; Bang, R.; Tiegs, G. Silibinin protects mice from T cell-dependent liver injury. J. Hepatol. 2003, 39, 333–340, doi:10.1016/S0168-8278(03)00239-3.
[32]
Comelli, M.C.; Mengs, U.; Schneider, C.; Prosdocimi, M. Toward the definition of the mechanism of action of silymarin: Activities related to cellular protection from toxic damage induced by chemotherapy. Integr. Cancer Ther. 2007, 6, 120–129, doi:10.1177/1534735407302349.
[33]
Luper, S. A review of plants used in the treatment of liver disease: Part 1. Altern. Med. Rev. 1998, 3, 410–421.
[34]
Chrungoo, V.J.; Singh, K.; Singh, J. Silymarin mediated differential modulation of toxicity induced by carbon tetrachloride, paracetamol and D-galactosamine in freshly isolated rat hepatocytes. Indian J. Exp. Biol. 1997, 35, 611–617.
[35]
Kroemer, G.; Petit, P.; Zamzami, N.; Vayssière, J.L.; Mignotte, B. The biochemistry of programmed cell death. FASEB J. 1995, 9, 1277–1287.
[36]
Patel, T.; Gores, G.J.; Kaufmann, S.H. The role of proteases during apoptosis. FASEB J. 1996, 10, 587–597.
[37]
Enari, M.; Sakahira, H.; Yokoyama, H.; Okawa, K.; Iwamatsu, A.; Nagata, S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998, 391, 43–50, doi:10.1038/34112.
[38]
Gekle, M.; Sauvant, C.; Schwerdt, G. Ochratoxin A at nanomolar concentrations: A signal modulator in renal cells. Mol. Nutr. Food Res. 2005, 49, 118–130, doi:10.1002/mnfr.200400062.
[39]
Assaf, H.; Azouri, H.; Pallardy, M. Ochratoxin A induces apoptosis in human lymphocytes through down regulation of Bcl-xL. Toxicol. Sci. 2004, 79, 335–344, doi:10.1093/toxsci/kfh123.
[40]
Gekle, M.; Schwerdt, G.; Freudinger, R.; Mildenberger, S.; Wilflingseder, D.; Pollack, V.; Dander, M.; Schramek, H. Ochratoxin A induces JNK activation and apoptosis in MDCK-C7 cells at nanomolar concentrations. J. Pharmacol. Exp. Ther. 2000, 293, 837–844.
[41]
Scibelli, A.; Tafuri, S.; Ferrante, M.C.; Alimenti, E.; Naso, B.; Lucisano, A.; Staiano, N.; della Morte, R. Ochratoxin A affects COS cell adhesion and signaling. Toxicol. Appl. Pharmacol. 2003, 192, 222–230, doi:10.1016/S0041-008X(03)00300-4.
[42]
Sauvant, C.; Holzinger, H.; Gekle, M. The nephrotoxin ochratoxin A induces key parameters of chronic interstitial nephropathy in renal proximal tubular cells. Cell Physiol. Biochem. 2005, 15, 125–134, doi:10.1159/000083660.
[43]
Wang, Y.K.; Hong, Y.J.; Huang, Z.Q. Protective effects of silybin on human umbilical vein endothelial cell injury induced by H2O2 in vitro. Vascul. Pharmacol. 2005, 43, 198–206, doi:10.1016/j.vph.2005.06.002.
Jiang, Y.Y.; Wang, H.J.; Wang, J.; Tashiro, S.; Onodera, S.; Ikejima, T. The protective effect of silibinin against mitomycin C-induced intrinsic apoptosis in human melanoma A375-S2 cells. J. Pharmacol. Sci. 2009, 111, 137–146, doi:10.1254/jphs.09171FP.
[46]
Zhou, B.; Wu, L.J.; Tashiro, S.; Onodera, S.; Uchiumi, F.; Ikejima, T. Silibinin protects rat cardiac myocyte from isoproterenol-induced DNA damage independent on regulation of cell cycle. Biol. Pharm. Bull. 2006, 29, 1900–1905, doi:10.1248/bpb.29.1900.
[47]
Tripathi, M.; Singh, B.K.; Kakkar, P. Glycyrrhizic acid modulates t-BHP induced apoptosis in primary rat hepatocytes. Food Chem. Toxicol. 2009, 47, 339–347, doi:10.1016/j.fct.2008.11.028.
[48]
Feher, J.; Lengyel, G. Silymarin in the treatment of chronic liver diseases: Past and future. Orv. Hetil. 2008, 149, 2413–2418, doi:10.1556/OH.2008.28519.
[49]
Ashkenazi, A.; Dixit, V.M. Death receptors: Signaling and modulation. Science 1998, 281, 1305–1308, doi:10.1126/science.281.5381.1305.
[50]
Osawa, Y.; Banno, Y.; Nagaki, M.; Brenner, D.A.; Naiki, T.; Nozawa, Y.; Nakashima, S.; Moriwaki, H. TNF-alpha-induced sphingosine 1-phosphate inhibits apoptosis through a phosphatidylinositol 3-kinase/Akt pathway in human hepatocytes. J. Immunol. 2001, 167, 173–180.
[51]
Kneuer, C.; Lakoma, C.; Honscha, W. Prediction of acute toxicity in HPCT-1E3 hepatocytoma cells with liver-like transport activities. Altern. Lab. Anim. 2007, 35, 411–420.
[52]
Honscha, W.; Petzinger, E. Characterization of the bile acid sensitive methotrexate carrier of rat liver cells. Naunyn Schmiedebergs. Arch. Pharmacol. 1999, 359, 411–419, doi:10.1007/PL00005369.
[53]
Halwachs, S.; Kneuer, C.; Honscha, W. Endogenous expression of liver-specific drug transporters for organic anions in the rat hepatocytoma fusion cell line HPCT-1E3. Eur. J. Cell Biol. 2005, 84, 677–686, doi:10.1016/j.ejcb.2005.01.008.
[54]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63, doi:10.1016/0022-1759(83)90303-4.
[55]
Worner, W.; Schrenk, D. Influence of liver tumor promoters on apoptosis in rat hepatocytes induced by 2-acetylaminofluorene, ultraviolet light, or transforming growth factor beta 1. Cancer Res. 1996, 56, 1272–1278.