全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Using LS-SVM Based Motion Recognition for Smartphone Indoor Wireless Positioning

DOI: 10.3390/s120506155

Keywords: motion recognition, LS-SVM, indoor navigation, positioning, wireless, smartphone

Full-Text   Cite this paper   Add to My Lib

Abstract:

The paper presents an indoor navigation solution by combining physical motion recognition with wireless positioning. Twenty-seven simple features are extracted from the built-in accelerometers and magnetometers in a smartphone. Eight common motion states used during indoor navigation are detected by a Least Square-Support Vector Machines (LS-SVM) classification algorithm, e.g., static, standing with hand swinging, normal walking while holding the phone in hand, normal walking with hand swinging, fast walking, U-turning, going up stairs, and going down stairs. The results indicate that the motion states are recognized with an accuracy of up to 95.53% for the test cases employed in this study. A motion recognition assisted wireless positioning approach is applied to determine the position of a mobile user. Field tests show a 1.22 m mean error in “Static Tests” and a 3.53 m in “Stop-Go Tests”.

References

[1]  Kraemer, I.; Eissfeller, B. A-GNSS: A Different Approach. Inside GNSS 2009, 4, 52–61.
[2]  Syrj?rinne, J. Studies on Modern Techniques for Personal Positioning. Ph.D. Thesis, Tampere University of Technology, Tampere, Finland, 2001.
[3]  Mulloni, A.; Wagner, D.; Schmalstieg, D.; Barakonyi, I. Indoor Positioning and Navigation with Camera Phones. IEEE Pervas. Comput. 2009, 8, 22–31.
[4]  Rouzaud, D.; Skaloud, J. Rigorous Integration of Inertial Navigation with Optical Sensors by Dynamic Networks. J. Navig. 2011, 58, 141–152.
[5]  Priyantha, N.B.; Chakraborty, A.; Balakrishnan, H. The Cricket Location-Support System. Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, Boston, MA, USA, 6–11 August 2000; pp. 32–43.
[6]  Bahl, P.; Padmanabhan, V.N. Radar: An In-Building RF Based User Location and Tracking System. IEEE INFOCOM 2000, 2, 775–784.
[7]  Pei, L.; Chen, R.; Liu, J.; Tenhunen, T.; Kuusniemi, H.; Chen, Y. Inquiry-Based Bluetooth Indoor Positioning via RSSI Probability Distributions. Proceedings of The Second International Conference on Advances in Satellite and Space Communications (SPACOMM 2010), Athens, Greece, 13–19 June 2010; pp. 151–156.
[8]  Pei, L.; Chen, R.; Liu, J.; Kuusniemi, H.; Tenhunen, T.; Chen, Y. Using Inquiry-Based Bluetooth RSSI Probability Distributions for Indoor Positioning. J. Global Position. Syst. 2010, 9, 122–130.
[9]  Gomes, G.; Sarmento, H. Indoor Location System Using ZigBee Technology. Proceedings of Third International Conference on Sensor Technologies and Applications, Athens, Greece, 18–23 June 2009; pp. 152–157.
[10]  Pahlavan, K.; Akgul, O.F.; Heidari, M.; Hatami, A.; Elwell, M.J.; Tingley, D.R. Indoor Geolocation in the Absence of Direct Path. IEEE Trans. Wireless Comm. 2006, 13, 50–58.
[11]  Hightower, J.; Want, R.; Borriello, G. SpotON: An Indoor 3D Location Sensing Technology Based on RF Signal Strength. UW-CSE 00-02-02; Department of Computer Science and Engineering, University of Washington: Seattle, WA, USA, 2000.
[12]  Storms, W.; Shockley, J.; Raquet, J. Magnetic Field Navigation in an Indoor Environment. Proceedings of Ubiquitous Positioning Indoor Navigation and Location Based Service (UPINLBS), Kirkkonummi, Finland, 3–4 October 2010.
[13]  Foxlin, E. Pedestrian Tracking with Shoe-Mounted Inertial Sensors. IEEE Comput. Graph. Appl. 2005, 25, 38–46, doi:10.1109/MCG.2005.140. 16315476
[14]  Chen, W.; Chen, R.; Chen, Y.; Kuusniemi, H.; Wang, J.; Fu, Z. An Effective Pedestrian Dead Reckoning Algorithm Using a Unified Heading Error Model. Proceedings of IEEE/ION PLANS 2010 Conference, Palm Springs, CA, USA, 4–6 May 2010.
[15]  Mathews, M.B.; Macdoran, P.F.; Gold, K.L. SCP Enabled Navigation Using Signals of Opportunity in GPS Obstructed Environments. J. Navig. 2011, 58, 91–110.
[16]  Chen, R.; Chen, W.; Chen, X.; Zhang, X.; Chen, Y. Sensing Strides Using EMG Signal for Pedestrian Navigation. GPS Solutions 2011, 15, 161–170, doi:10.1007/s10291-010-0180-x.
[17]  Chen, W.; Chen, R.; Chen, X.; Zhang, X.; Chen, Y.; Wang, J.; Fu, Z. Comparison of EMG-Based and Accelerometer-Based Speed Estimation Methods in Pedestrian Dead Reckoning. J. Navig. 2011, 64, 265–280, doi:10.1017/S0373463310000391.
[18]  Chen, R.; Chen, Y.; Pei, L.; Chen, W.; Kuusniemi, H.; Liu, J.; Lepp?koski, H.; Takala, J. A DSP-Based Multi-Sensor Multi-Network Positioning Platform. Proceedings of the 22nd International Technical meeting of the Satellite Division of the Institute of Navigation ION GNSS 2009, Savannah, GA, USA, 22–25 September 2009; pp. 615–621.
[19]  Pei, L.; Chen, R.; Chen, Y.; Lepp?koski, H.; Perttula, A. Indoor/Outdoor Seamless Positioning Technologies Integrated on Smart Phone. Proceedings of the International Conference on Advances in Satellite and Space Communications, Colmar, France, 20–25 July 2009; pp. 141–145.
[20]  Liu, J.; Chen, R.; Pei, L.; Chen, W.; Tenhunen, T.; Kuusniem, H.; Kr?ger, T.; Chen, Y. Accelerometer Assisted Wireless Signals Robust Positioning Based on Hidden Markov Model. Proceedings of the IEEE/ION Position, Location and Navigation Symposium (PLANS) 2010, Indian Wells, CA, USA, 3–6 May 2010; pp. 488–497.
[21]  Kuusniemi, H.; Liu, J.; Pei, L.; Chen, Y.; Chen, L.; Chen, R. Reliability Considerations of Multi-Sensor Multi-Network Pedestrian Navigation. Radar Sonar Navig. IET 2012, 6, 157–164, doi:10.1049/iet-rsn.2011.0247.
[22]  Pahlavan, K.; Akgul, F.; Ye, Y.; Morgan, T.; Alizadeh-Shabdiz, F.; Heidari, M.; Steger, C. Taking Positioning Indoors Wi-Fi Localization and GNSS. Inside GNSS 2010, 5, 40–47.
[23]  Ekahau Inc. Available online: http://www.ekahau.com/ (accessed on 4 September 2011).
[24]  Want, R.; Hopper, A.; Falcao, V.; Gibbons, J. The Active Badge Location System. ACM Trans. Inform. Syst. 1992, 10, 91–102, doi:10.1145/128756.128759.
[25]  Schilit, B.N.; LaMarca, A.; Borriello, G.; Griswold, W.G.; McDonald, D.W.; Lazowska, E.D.; Balachandran, A.; Hong, J.I.; Iverson, V. Challenge: Ubiquitous Location-Aware Computing and the “Place Lab” Initiative. Proceedings of the 1st ACM International Workshop on Wireless Mobile Applications and Services on WLAN Hotspots (WMASH 2003), San Diego, CA, USA, 19 September 2003; pp. 29–35.
[26]  Frank, K.; Nadales, M.J.V.; Robertson, P.; Angermann, M. Reliable Real-Time Recognition of Motion Related Human Activities Using MEMS Inertial Sensors. Proceedings of the 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, OR, USA, 21–24 September 2010.
[27]  Susi, M.; Borio, D.; Lachapelle, G. Accelerometer Signal Features and Classification Algorithms for Positioning Applications. Proceedings of International Technical Meeting, San Diego, CA, USA, 24–26 January 2011.
[28]  Pei, L.; Chen, R.; Liu, J.; Chen, W.; Kuusniemi, H.; Tenhunen, T.; Kr?ger, T.; Chen, Y.; Lepp?koski, H.; Takala, J. Motion Recognition Assisted Indoor Wireless Navigation on a Mobile Phone. Proceedings of the 23rd International Technical Meeting of The Satellite Division of the Institute of Navigation, Portland, OR, USA, 21–24 September 2010; pp. 3366–3375.
[29]  Pei, L.; Chen, R.; Liu, J.; Kuusniemi, H.; Chen, Y.; Tenhunen, T. Using Motion-Awareness for the 3d Indoor Personal Navigation on a Smartphone. Proceedings of the 24rd International Technical Meeting of The Satellite Division of the Institute of Navigation, Portland, OR, USA, 19–23 September 2011; pp. 2906–2912.
[30]  Poppe, R. Vision-Based Human Motion Analysis: An Overview. Comput. Vision Image Understand. 2007, 108, 4–18, doi:10.1016/j.cviu.2006.10.016.
[31]  Chung, T.Y.; Chen, Y.-M.; Hsu, C.-H. Adaptive Momentum-Based Motion Detection Approach and Its Application on Handoff in Wireless Networks. Sensors 2009, 9, 5715–5739. 22346724
[32]  Fong, D.T.-P.; Chan, Y.-Y. The Use of Wearable Inertial Motion Sensors in Human Lower Limb Biomechanics Studies: A Systematic Review. Sensors 2010, 10, 11556–11565, doi:10.3390/s101211556. 22163542
[33]  Yang, C.-C.; Hsu, Y.-L. A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring. Sensors 2010, 10, 7772–7788, doi:10.3390/s100807772. 22163626
[34]  Zeng, H.; Zhao, Y. Sensing Movement: Microsensors for Body Motion Measurement. Sensors 2011, 11, 638–660, doi:10.3390/s110100638. 22346595
[35]  Musleh, B.; García, F.; Otamendi, J.; Armingol, J.M.; De la Escalera, A. Identifying and Tracking Pedestrians Based on Sensor Fusion and Motion Stability Predictions. Sensors 2010, 10, 8028–8053, doi:10.3390/s100908028. 22163639
[36]  Kavanagh, J.J.; Menz, H.B. Accelerometry: A Technique for Quantifying Movement Patterns During Walking. Gait Posture 2008, 28, 1–15, doi:10.1016/j.gaitpost.2007.10.010. 18178436
[37]  Baek, J.; Lee, G.; Park, W.; Yun, B. Accelerometer Signal Processing for User Activity Detection. Knowl. Based Intell. Inform. Eng. Syst. 2004, 3215, 610–617.
[38]  Chen, W.; Fu, Z.; Chen, R.; Chen, Y.; Andrei, O.; Kr?ger, T; Wang, J. An Integrated GPS and Multi-Sensor Pedestrian Positioning System for 3D Urban Navigation. Proceedings of Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009; pp. 1–6.
[39]  Yang, J. Toward Physical Activity Diary: Motion Recognition Using Simple Acceleration Features with Mobile Phones. Proceedings of the 1st International Workshop on Interactive Multimedia for Consumer Electronics (IMCE), Beijing, China, 19–23 October 2009; pp. 1–10.
[40]  Suykens, J.A.K.; Vandewalle, J. Least Squares Support Vector Machine Classifiers. Neur. Process. Lett. 1999, 9, 293–300, doi:10.1023/A:1018628609742.
[41]  Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classifiers. Proceedings of the 5th Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152.
[42]  Hospodar, G.; Gierlichs, B.; Mulder, E.D.; Verbauwhede, I.; Vandewalle, J. Machine Learning in Side-Channel Analysis: A First Study. J. Cryptograph. Eng. 2011, 1, 293–302, doi:10.1007/s13389-011-0023-x.
[43]  Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313, doi:10.1093/comjnl/7.4.308.
[44]  Cohen, G.; Ruch, P.; Hilario, M. Model Selection for Support Vector Classifiers via Direct Simplex Search. Proceedings of the FLAIRS Conference, Clearwater Beach, FL, USA, 15–17 May 2005; pp. 431–435.
[45]  Youssef, M.; Agrawala, A.; Shankar, A.U. WLAN Location Determination via Clustering and Probability Distributions. Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom 2003), Dallas Fort-Worth, TX, USA, 23–26 March 2003; pp. 143–150.
[46]  Roos, T.; Myllymaki, P.; Tirri, H.; Misikangas, P.; Siev?nen, J. A Probabilistic Approach to WLAN User Location Estimation. Int. J. Wirel. Inform. Netw. 2002, 9, 155–164, doi:10.1023/A:1016003126882.
[47]  Ristic, B.; Arulampalam, S.; Gordon, N. Beyond the Kalman Filter; Artech House: Boston, MA, USA, 2004.
[48]  Rabiner, L.R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proc. IEEE 1989, 77, 257–286, doi:10.1109/5.18626.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133