全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
软件学报  2003 

A Fast Clustering Algorithm Based on Reference and Density
一种基于参考点和密度的快速聚类算法

Keywords: clustering,density,high dimension,reference,data mining
聚类
,密度,高维,参考点,数据挖掘

Full-Text   Cite this paper   Add to My Lib

Abstract:

数据的规模越来越大,要求数据挖掘算法有很高的执行效率.基于密度的聚类是聚类分析中的一种,其主要优点是发现任意形状的聚类和对噪音数据不敏感.提出了一种新的基于参考点和密度的CURD(clustering using references and density)聚类算法,其创新点在于,通过参考点来准确地反映数据的空间几何特征,然后基于参考点对数据进行分析处理.CURD算法保持了基于密度的聚类算法的上述优点,而且CURD算法具有近似线性的时间复杂性,因此CURD算法适合对大规模数据的挖掘.理论分析和实验结果也证明了CURD算法具有处理任意形状的聚类、对噪音数据不敏感的特点,并且其执行效率明显高于传统的基于R*-树的DBSCAN算法.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133