全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
软件学报  2008 

Local and Global Preserving Based Semi-Supervised Dimensionality Reduction Method
基于局部与全局保持的半监督维数约减方法

Keywords: side-information,local and global preserving,semi-supervised learning,dimensionality reduction,graph embedding
边信息
,局部与全局保持,半监督学习,维数约减,图嵌入

Full-Text   Cite this paper   Add to My Lib

Abstract:

In many machine learning and data mining tasks,it can't achieve the best semi-supervised learning result if only use side-information.So,a local and global preserving based semi-supervised dimensionality reduction (LGSSDR) method is proposed in this paper.LGSSDR algorithm can not only preserve the positive and negative constraints but also preserve the local and global structure of the whole data manifold in the low dimensional embedding subspace.Besides,the algorithm can compute the transformation matrix and handle unseen samples easily.Experimental results on several datasets demonstrate the effectiveness of this method.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133