|
软件学报 2002
Automatic Audio Classification by Using Hidden Markov Model
|
Abstract:
音频的自动分类,尤其是语音和音乐的分类,是提取音频结构和内容语义的重要手段之一,它在基于内容的音频检索、视频的检索和摘要以及语音文档检索等领域都有重大的应用价值.由于隐马尔可夫模型能够很好地刻画音频信号的时间统计特性,因此,提出一种基于隐马尔可夫模型的音频分类算法,用于语音、音乐以及它们的混合声音的分类.实验结果表明,隐马尔可夫模型的音频分类性能较好,最优分类精度达到90.28%.