This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered.
References
[1]
Akyildiz, I.F.; Su, W.; SankarasubRamaniam, Y.; Cayirci, E. A survey on sensor networks. IEEE Commun. Mag. 2002, 40, 102–105.
[2]
Santos, J.L.; Fraz?oa, O.; Baptista, J.M.; Jorge, P.A.S.; Dias, I.; Araújo, F.M.; Ferreira, L.A. Optical Fibre Sensing Networks. Proceedings of SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, Belem, Brazil, 3–6 November 2009; pp. 290–298.
[3]
López, O.G.; Schires, K.; Urquhart, P.; Gueyne, N.; Duhamel, B. Optical fiber bus protection network to multiplex sensors: Amplification by remotely pumped EDFAs. IEEE Trans. Instrum. Meas. 2009, 58, 2945–2951.
[4]
Li, H.; Li, D.; Song, G. Recent applications of fiber optic sensors to health monitoring in civil engineering. Eng. Struct. 2004, 26, 1647–1657.
[5]
Majumder, M.; Gangopadhyay, T.K.; Chakraborty, A.K.; Dasgupta, K.; Bhattacharya, D.K. Fibre bragg gratings in structural health monitoring-present status and applications. Sens. Actuat. A Phys. 2008, 147, 150–164.
[6]
Dandridge, A.; Kirkendall, C. Passive Fiber Optic Sensor Networks. In Optical Fibre Sensing Technology; Lopez-Higuera, J.M., Ed.; Wiley & Son: Berlin, Germany, 2002; pp. 433–448.
[7]
Udd, E. Overview Fiber Optic Sensors. In Book Fiber Optic Sensors; Yin, S., Ruffin, P.B., Yu, F.T.S., Eds.; Taylor & Francis: New York, NY, USA, 2008; pp. 1–34.
[8]
Urquhart, P.; Palezi, H.; Jardin, P. Optical Fiber Bus Protection Network to Multiplex Sensors: Self-Diagnostic Operation. J. Lightw. Technol. 2011, 29, 1427–1436.
[9]
Mehrani, E.; Ayoub, A.; Ayoub, A. Evaluation of Fiber Optic Sensors for Remote Health Monitoring of Bridge Structures. Mater. Struct./Mater. Construct 2009, 42, 183–199.
[10]
Saitoh, T.; Nakamura, K.; Takahashi, Y.; Iida, H.; Iki, Y.; Miyagi, K. Ultra-long-distance (230 km) FBG sensor system. Proc. SPIE. 2008, 7004, 70046C–4.
[11]
Rao, Y.; Ran, Z.; Chen, R. Long-distance fiber bragg grating sensor system with a high optical signal-to-noise ratio based on a tunable fiber ring laser configuration. Opt. Lett. 2006, 31, 2684–2686.
[12]
Guru Prasad, A.S.; Asokan, S.; Tatavarti, R. Detection of Tsunami Wave Generation and Propagation using Fiber Bragg Grating Sensors. Proceedings of IEEE Sensors Conference, Christchurch, New Zealand, 25–28 October 2009; pp. 1278–1281.
[13]
Nakstad, H.; Kringlebotn, J.T. Realisation of a full-scale fibre optic ocean bottom seismic system. Proc. SPIE. 2008, 7004, 700436–700436-4.
[14]
Ferraro, P.; De Natale, G. On the possible use of optical fiber bragg gratings as strain sensors for geodynamical monitoring. Opt. Lasers in Eng. 2002, 37, 115–130.
[15]
Wei, C.; Lai, C.; Liu, S.; Chung, W.H.; Ho, T.K.; Tam, H.; Ho, S.L.; McCusker, A.; Kam, J.; Lee, K.Y. A fiber bragg grating sensor system for train axle counting. IEEE Sens. J 2010, 10, 1905–1912.
[16]
Zornoza, A.; Olier, D.; Sagues, M.; Loayssa, A. Brillouin distributed sensor using RF shaping of pump pulses. Meas. Sci. Technol. 2010, 21, doi:10.1088/0957-0233/21/9/094021..
[17]
Rodríguez-Barrios, F.; Martín-López, S.; Carrasco-Sanz, A.; Corredera, P.; Ania-Casta?ón, J.D.; Thévenaz, L.; González-Herráez, M. Distributed Brillouin Fiber Sensor Assisted by First-Order Raman Amplification. J. Lightw. Technol. 2010, 28, 2162–2172.
[18]
Song, K.Y.; Chin, S.; Primerov, N.; Thevenaz, L. Time-domain distributed fiber sensor with 1 cm spatial resolution based on brillouin dynamic grating. J. Lightw. Technol. 2010, 28, 2062–2067.
[19]
Soto, M.A.; Bolognini, G.; Di Pasquale, F. Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification. Opt. Express 2011, 19, 4444–4457.
[20]
Soto, M.A.; Faralli, S.; Taki, M.; Bolognini, G.; Di Pasquale, F. BOTDA sensor with 2-m spatial resolution over 120 km distance using bi-directional distributed Raman amplification. Proc. SPIE. 2011, 7753, doi:10.1117/12.884979..
[21]
Angulo-Vinuesa, X.; Martin-Lopez, S.; Nuno, J.; Corredera, P.; Ania-Castanon, J.D.; Thévenaz, L.; Gonzalez-Herraez, M. Hot spot detection over 100 km with 2 meter resolution in a Raman-assisted brillouin distributed sensor. Proc. SPIE. 2011, 7753, doi:10.1117/12.885041..
[22]
Dong, Y.; Bao, X.; Chen, L. 100-km Sensing range brillouin optical time domain analysis based on time-division multiplexing. Proc. SPIE. 2011, 7753, doi:10.1117/12.885224..
[23]
Rao, Y. Recent progress in fiber-optic extrinsic fabry-perot interferometric sensors. Opt. Fiber Technol. 2006, 12, 227–237.
Pinet, é. Fabry-pérot fiber-optic sensors for physical parameters measurement in challenging conditions. J. Sens. 2009, doi:10.1155/2009/720980..
[26]
Taylor, H.R. Fiber Optic Sensors Based upon the Fabry-Perot Interferometer. In Fiber Optic Sensors; Yin, S., Ruffin, P.B., Yu, F.T.S., Eds.; Taylor & Francis: New York, NY, USA, 2008; pp. 35–64.
[27]
Chow, J.H.; Littler, I.C.M.; McClelland, D.E.; Gray, M.B. Long distance, high performance remote strain sensing with a fiber fabry-perot by radio-frequency laser modulation. Proc SPIE. 2006, 6201, doi:10.1117/12.664282..
[28]
Chow, J.H.; Littler, I.C.M.; McClelland, D.E.; Gray, M.B. A 100 km Ultra-High Performance Fiber Sensing System. Proceedings of Conference on Lasers and Electro-Optics, CLEO 2007, Baltimore, MD, USA, 6–11 May 2007.
Zhao, Y.; Liao, Y. Discrimination methods and demodulation techniques for fiber bragg grating sensors. Opt. Lasers Eng. 2004, 41, 1–18.
[32]
Jones, J.D.C.; MacPherson, W.N. Discrimination Techniques for Optical Sensors. In Optical Fibre Sensing Technology; Lopez-Higuera, J.M, Ed.; Wiley & Son: Berlin, Geramny, 2002; pp. 403–420.
[33]
Lee, B.; Jeong, Y. Interrogation Techniques for Fiber Grating Sensors and the Theory of Fiber Gratings. In Fiber Optic Sensors; Yin, S., Ruffin, P.B., Yu, F.T.S., Eds.; Taylor & Francis: New York, NY, USA, 2008; pp. 253–331.
Guo, H.; Xiao, G.; Mrad, N.; Yao, J. Fiber optic sensors for structural health monitoring of air platforms. Sensors 2011, 11, 3687–3705.
[36]
Rodrigues, C.; Félix, C.; Lage, A.; Figueiras, J. Development of a long-term monitoring system based on FBG sensors applied to concrete bridges. Eng. Struct. 2010, 32, 1993–2002.
[37]
Filograno, M.L.; Corredera Guillén, P.; Rodríguez-Barrios, A.; Martin-López, S.; Rodríguez-Plaza, M.; Andrés-Alguacil, á.; González-Herráez, M. Real-Time Monitoring of Railway Traffic using Fiber Bragg Grating Sensors. IEEE Sens. J 2012, 12, 85–92.
[38]
Diaz, S.; Abad, S.; Lopez-Amo, M. Fiber-optic sensor active networking with distributed erbium-doped fiber and Raman amplification. Laser Photonics Rev. 2008, 2, 480–497.
[39]
Han, Y.; Tran, T.V.A.; Kim, S.; Lee, S.B. Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature. Opt. Lett. 2005, 30, 1282–1284.
[40]
Peng, P.; Tseng, H.; Chi, S. Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme. IEEE Photonics Technol. Lett. 2004, 16, 575–577.
[41]
Hu, J.; Chen, Z.; Yang, X.; Ng, J.; Yu, C. 100-km Long distance fiber bragg grating sensor system based on erbium-doped fiber and Raman amplification. IEEE Photonics Technol. Lett. 2010, 22, 1422–1424.
[42]
Lee, J.H.; Chang, Y.M.; Han, Y.; Chung, H.; Kim, S.H.; Lee, S.B. Raman amplifier-based long-distance remote, strain and temperature sensing system using an erbium-doped fiber and a fiber Bragg grating. Opt. Express 2004, 12, 3515–3520.
[43]
Leandro, D.; Ullan, A.; Lopez-Amo, M.; Lopez-Higuera, J.M.; Loayssa, A. Remote (155 km) fiber Bragg grating interrogation technique combining Raman, brillouin and erbium gain in a fiber laser. IEEE Photonics Techno. Lett. 2011, 23, 621–623.
[44]
Bravo, M.; Baptista, J.M.; Santos, J.L.; Lopez-Amo, M.; Fraz?o, O. Ultralong 250 km remote sensor system based on a fiber loop mirror interrogated by an optical time-domain reflectometer. Opt. Lett. 2011, 36, 4059–4061.
[45]
Rottwitt, K. Distributed Raman Amplifiers. In Raman Amplification in Fiber Optical Communication Systems; Headley, C., Agrawal, G.P., Eds.; Elsevier Academic Press: Oxford, UK, 2005; pp. 103–163.
[46]
Stolen, R.H. Fundamentals of Raman Amplification in Fibers. In Raman Amplifiers for Telecommunication 1, Physical Principle; Islam, M.N., Ed.; Springer: New York, NY, USA, 2004; pp. 35–59.
[47]
Bromage, J. Raman amplification for fiber communications systems. J. Lightw. Technol. 2004, 22, 79–93.
[48]
Islam, M.N. Raman Amplification in Telecommunications. In Raman Amplifiers for Telecommunication 1, Physical Principle; Islam, M.N., Ed.; Springer: New York, NY, USA, 2004; pp. 1–34.
[49]
Sheng, Z. Theoretical analysis of rayleigh backscattering noise in fiber Raman amplifiers. Commun. Theor. Phys. 2005, 44, 908–910.
Fludger, C.R.S.; Mears, R.J. Electrical measurements of multipath interference in distributed Raman amplifiers. J. Lightw. Technol. 2001, 19, 536–545.
[52]
Bromage, J.; Winzer, P.J.; Essiambre, R.J. Multiple Path Interference and its Impact on System Design. In Raman Amplifiers for Telecommunication 2, Sub-Systems and Systems; Islam, M.N., Ed.; Springer: New York, NY, USA, 2004; pp. 1–34.
[53]
Lewis, S.A.E.; Chernikov, S.V.; Taylor, J.R. Characterization of double rayleigh scatter noise in Raman amplifiers. IEEE Photonics Technol. Lett. 2000, 12, 528–530.
[54]
Kim, S.; Kwon, J.; Kim, S.; Lee, B. Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier. IEEE Photonics Technol. Lett. 2001, 13, 350–351.
[55]
May-Alarcón, M.; Kuzin, E.A.; Vázquez-Sánchez, R.A.; Shlyagin, M.G.; Marquez-Borbón, I. Multipoint fiber Bragg grating laser sensor interrogated by the intermodal beating frequency. Opt. Eng. 2003, 42, 2246–2249.
[56]
Nakajima, Y.; Shindo, Y.; Yoshikawa, T. Novel concept as long-distance transmission FBG sensor system using distributed Raman amplifier. Proc. SPIE. 2003, 530–533.
[57]
Díaz, S.; Lasheras, G.; López-Amo, M.; Urquhart, P.; Jáuregui, C.; López-Higuera, J.M. Wavelength-division-multiplexed distributed fiber Raman amplifier bus network for sensors. Proc. SPIE. 2006, 5855, 242–245.
[58]
Diaz, S.; Lasheras, G.; Lopez-Amo, M. WDM bi-directional transmission over 35 km amplified fiber-optic bus network using Raman amplification for optical sensors. Opt. Express 2005, 13, 9666–9671.
[59]
Han, Y.; Tran, T.V.A.; Kim, S.; Lep, S.B. Development of a multiwavelength Raman fiber laser based on phase-shifted fiber bragg gratings for long-distance remote-sensing applications. Opt. Lett. 2005, 30, 1114–1116.
[60]
Peng, P.; Feng, K.; Peng, W.; Chiou, H.; Chang, C.; Chi, S. Long-distance fiber grating sensor system using a fiber ring laser with EDWA and SOA. Opt. Commun. 2005, 252, 127–131.
[61]
Diaz, S.; Lopez-Amo, M. Comparison of wavelength-division-multiplexed distributed fiber Raman amplifier networks for sensors. Opt. Express 2006, 14, 1401–1407.
[62]
Saitoh, T.; Nakamura, K.; Takahashi, Y.; Iida, H.; Iki, Y.; Miyagi, K. Ultra-long-distance fiber Bragg grating sensor system. IEEE Photonics Technol. Lett. 2007, 19, 1616–1618.
[63]
Daru, C.; Chester, S.; Sailing, H. Multiple fiber Bragg grating interrogation based on a spectrum-limited fourier domain mode-locking fiber laser. Opt. Lett. 2008, 33, 1395–1397.
[64]
Perez-Herrera, R.A.; Diaz, S.; Fernández-Vallejo, M.; López-Amo, M.; Quintela, M.A.; Lopez-Higuera, J.M. Switchable multi-wavelength erbium-doped fiber laser for remote sensing. Proc. SPIE. 2009, 7503, doi:10.1117/12.835134..
[65]
Han, Y. Long-distance Remote sensors for simultaneous measurement of strain and temperature based on multiwavelength fiber lasers. Proc. SPIE. 2009, 7503, doi:10.1117/12.837631..
[66]
Fernandez-Vallejo, M.; Díaz, S.; Perez-Herrera, R.A.; Passaro, D.; Selleri, S.; Quintela, M.A.; López Higuera, J.M.; Lopez-Amo, M. Resilient long-distance sensor system using a multiwavelength Raman laser. Meas. Sci. Technol. 2010, 21.
[67]
Fernandez-Vallejo, M.; Díaz, S.; Perez-Herrera, R.A.; Passaro, D.; Selleri, S.; Quintela, M.A.; López Higuera, J.M.; Lopez-Amo, M. Resilient long-distance sensor system using a multiwavelength Raman laser. Proc. SPIE. 2009, 7503, doi:10.1117/12.833524..
[68]
Fernandez-Vallejo, M.; Leandro, D.; Loayssa, A.; Lopez-Amo, M. Fiber Bragg grating interrogation technique for remote sensing (100 km) using a hybrid brillouin-Raman fiber laser. Proc. SPIE. 2011, 7753, doi:10.1117/12.882556.
[69]
Fernandez-Vallejo, M.; Rota-Rodrigo, S.; Lopez-Amo, M. Remote (250 km) fiber Bragg grating multiplexing system. Sensors 2011, 11, 8711–8720.
[70]
Han, Y.G. A long-distance remote sensing technique using a multiwavelength Raman fiber laser based on fiber Bragg gratings embedded in a quartz tube. IEEE Sens. J 2011, 11, 1152–1156.
[71]
Bravo, M.; Fernández Vallejo, M.; Lopez-Amo, M. Hybrid OTDR-fiber laser system for remote sensor multiplexing. IEEE Sens. J 2012, 12, 174–178.
[72]
Hu, J.; Chen, Z.; Yu, C. 150-km long distance FBG temperature and vibration sensor system based on stimulated Raman amplification. IEEE J. Lightw. Technol. 2011, doi:10.1109/JLT.2011.2172573..
[73]
Lopez-Amo, M. Abad S. Amplified fiberoptic networks for sensor multiplexing. Jpn. J. Appl. Phys. 2006, 45, 6626–6631.
[74]
Lopez-Izquierdo, E.; Urquhart, P.; Lopez-Amo, M. Protection architectures for WDM optical fibre bus sensor arrays. J. Eng. 2007, 1, 1–18.
[75]
Carena, A.; Curri, V.; Poggiolini, P. On the optimization of hybrid Raman/erbium-doped fiber amplifiers. IEEE Photonics Technol. Lett. 2001, 13, 1170–1172.
[76]
Jenkins, R.B.; Sova, R.M.; Joseph, R.I. Steady-state noise analysis of spontaneous and stimulated brillouin scattering in optical fibers. J. Lightw. Technol. 2007, 25, 763–770.
[77]
Chraplyvy, A.R. Limitations on lightwave communications imposed by optical-fiber nonlinearities. J. Lightw. Technol. 1990, 8, 1548–1557.
[78]
Pérez-Herrera, R.A.; Quintela, M.A.; Fernández-Vallejo, M.; Quintela, A.; López-Amo, M.; López-Higuera, J.M. Stability comparison of two ring resonator structures for multiwavelength fiber lasers using highly doped er-fibers. J. Lightw. Technol. 2009, 27, 2563–2569.
[79]
Montoya, V.; López-Amo, M.; Abad, S. Improved double-fiber-bus with distributed optical amplification for wavelength-division multiplexing of photonic sensors. IEEE Photonics Technol. Lett. 2000, 12, 1270–1272.
[80]
Diaz, S.; Cerrolaza, B.; Lasheras, G.; Lopez-Amo, M. Double Raman amplified bus networks for wavelength-division multiplexing of fiber-optic sensors. J. Lightw. Technol. 2007, 25, 733–739.