全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

2:1 Multiplexing Function in a Simple Molecular System

DOI: 10.3390/s120404421

Keywords: fluorescence, anthracene, molecular 2:1 multiplexer

Full-Text   Cite this paper   Add to My Lib

Abstract:

1-[(Anthracen-9-yl)methylene] thiosemicarbazide shows weak fluorescence due to a photo-induced electron transfer (PET) process from the thiosemicarbazide moiety to the excited anthracene. The anthracene emission can be recovered via protonation of the amine as the protonated aminomethylene as an electron-withdrawing group that suppresses the PET process. Similarly, chelation between the ligand and the metal ions can also suppress the PET process and results in a fluorescence enhancement (CHEF). When solvents are introduced as the third control, a molecular 2:1 multiplexer is constructed to report selectively the inputs. Therefore, a molecular 2:1 multiplexer is realized in a simple molecular system.

References

[1]  Brown, G.J.A.; de Silva, A.P.; Weir, S.M. Encyclopedia of Supramolecular Chemistry; Lehn, J.-M., Ed.; Marcel Dekker: New York, NY, USA, 2004.
[2]  Balzani, V.; Ceroni, P.; Ferrer, B. Molecular devices. Pure Appl. Chem. 2004, 76, 1887–1901.
[3]  Balzani, V.; Credi, A.; Venturi, M. Molecular Devices and Machines: A Journey into the Nanoworld; Wiley-VCH: Weinheim, Germany, 2003.
[4]  Gust, D.; Moore, T.A.; Moore, A.L. Molecular switches controlled by light. Chem. Commun. 2006, 1169–1178.
[5]  Raymo, F.M. Digital processing and communication with molecular switches. Adv. Mater. 2002, 14, 401–414.
[6]  De Silva, A.P.; Fox, D.B.; Huxley, A.J.M.; Moody, T.S. Combining luminescence, coordination and electron transfer for signalling purposes. Coord. Chem. Rev. 2000, 205, 41–57.
[7]  Pischel, U. Chemical approaches to molecular logic elements for addition and subtraction. Angew. Chem. Int. Ed. 2007, 46, 4026–4040.
[8]  Credi, A. Molecules that make decisions. Angew. Chem. Int. Ed. 2007, 46, 5472–5475.
[9]  De Silva, A.P.; Gunaratne, H.Q.; McCoy, C.P. A molecular photoionic and gate based on fluorescent signalling. Nature 1993, 364, 42–44.
[10]  De Silva, A.P.; McClenaghan, N.D. Molecular-scale logic gates. Chem. Eur. J. 2004, 10, 574–586.
[11]  De Silva, A.P.; McCaughan, B.; McKinney, B.O.F.; Querol, M. New optical-based molecular devices from older coordination chemistry. Dalton Trans. 2003, 10, 1902–1913.
[12]  De Silva, A.P.; Gunaratne, H.Q.N.; McCoy, C.P. Molecular photoionic and logic gates with bright fluorescence and “Off-On” digital action. J. Am. Chem. Soc. 1997, 119, 7891–7892.
[13]  Saghatelian, A.; V?lcker, N.H.; Guckian, K.M.; Lin, V.S.-Y.; Ghadiri, M.R. DNA-based photonic logic gates: AND, NAND, and INHIBIT. J. Am. Chem. Soc. 2003, 125, 346–347.
[14]  Qu, D.H.; Ji, F.Y.; Wang, Q.C.; Tian, H. A double INHIBIT logic gate employing configuration and fluorescence changes. Adv. Mater. 2006, 18, 2035–2038.
[15]  Qu, D.H.; Wang, Q.C.; Tian, H. A half adder based on a photochemically driven [2]rotaxane. Angew. Chem. Int. Ed. 2005, 44, 5296–5299.
[16]  Remacle, F.; Weinkauf, R.; Levine, R.D. Molecule-based photonically switched half and full adder. J. Phys. Chem. A 2006, 110, 177–184.
[17]  De Sousa, M.; de Castro, B.; Abad, S.; Mirandab, M.A.; Pischel, U. A molecular tool kit for the variable design of logic operations (NOR, INH, EnNOR). Chem. Commun. 2006, 19, 2051–2053.
[18]  Shiraishi, Y.; Tokitoh, Y.; Hirai, T. A fluorescent molecular logic gate with multiply-configurable dual outputs. Chem. Commun. 2005, 42, 5316–5318.
[19]  Guo, X.; Zhang, D.; Tao, H.; Zhu, D. Concatenation of two molecular switches via a Fe(II)/Fe(III) couple. Org. Lett. 2004, 6, 2491–2494.
[20]  Collier, C.P.; Wong, E.W.; Belohradsky, M.; Raymo, F.M.; Stoddart, J.F.; Kuekes, P.J.; Williams, R.S.; Heath, J.R. Electronically configurable molecular-based logic gates. Science 1999, 285, 391–394.
[21]  De Silva, A.P. Molecular logic gate arrays. Chem. Asian J. 2011, 6, 750–766.
[22]  De Silva, A.P.; McClenaghan, N.D. Proof-of-principle of molecular-scale arithmetic. J. Am. Chem. Soc. 2000, 122, 3965–3966.
[23]  Margulies, D.; Melman, G.; Felder, C.E.; Arad-Yellin, R.; Shanzer, A. Chemical input multipliciry facilitates arithmetical processing. J. Am. Chem. Soc. 2004, 126, 15400–15401.
[24]  Margulies, D.; Melman, G.; Shanzer, A. A molecular full-adder and full-subtractor: An additional step toward a moleculator. J. Am. Chem. Soc. 2006, 128, 4865–4871.
[25]  Margulies, D.; Melman, G.; Shanzer, A. Fluorescein as a model molecular calculator with reset capability. Nat. Mater. 2005, 4, 768–771.
[26]  Straight, S.D.; Andréasson, J.; Kodis, G.; Bandyopadhyay, S.; Mitchell, R.H.; Moore, T.A.; Moore, A.L.; Gust, D. Molecular and and inhibit gates based on control of porphyrin fluorescence. J. Am. Chem. Soc. 2005, 127, 9403–9409.
[27]  Coskun, A.; Deniz, E.; Akkaya, E.U. Effective PET and ICT switching of boradiazaindacene emission: A unimolecular, emission-mode, molecular half-subtractor with reconfigurable logic gates. Org. Lett. 2005, 7, 5187–5189.
[28]  Zhou, Y.; Wu, H.; Qu, L.; Zhang, D.; Zhu, D. A new redox-resettable molecule-based half-adder with tetrathiafulvalene. J. Phys. Chem. B 2006, 110, 15676–15679.
[29]  Zhang, G.; Zhang, D.; Zhou, Y.; Zhu, D. A new tetrathiafulvalene-anthracence dyad fusion with the crown ether group: fluorescence modulation with Na+ and C60, mimicking the performance of an “AND” logic gate. J. Org. Chem. 2006, 71, 3970–3972.
[30]  Liu, Y.; Jiang, W.; Zhang, H.-Y.; Li, C.J. A multifunctional arithmetical processor model integrated inside a single molecule. J. Phys. Chem. B 2006, 110, 14231–14235.
[31]  Guo, Z.; Zhu, W.; Shen, L.; Tian, H. A fluorophore capable of crossword puzzles and logic memory. Angew. Chem. Int. Ed. 2007, 46, 5549–5553.
[32]  Sun, W.; Zhou, C.; Xu, C.H.; Fang, C.J.; Zhang, C.; Li, Z.X.; Yan, C.H. A fluorescent-switch-based computing platform in defending information risk. Chem. Eur. J. 2008, 14, 6342–6351.
[33]  Li, Z.X.; Liao, L.Y.; Sun, W.; Xu, C.H.; Zhang, C.; Fang, C.J.; Yan, C.H. A fluorescent-switch-based computing platform in defending information risk. J. Phys. Chem. C 2008, 112, 5190–5196.
[34]  Andréasson, J.; Straight, S.D.; Bandyopadhyay, S.; Mitchell, R.H.; Moore, T.A.; Moore, A.L.; Gust, D. Molecular 2:1 digital multiplexer. Angew. Chem. Int. Ed. 2007, 46, 958–961.
[35]  Andréasson, J.; Pischel, U.; Straight, S.D.; Moore, T.A.; Moore, A.L.; Gust, D. All-photonic multifunctional molecular logic device. J. Am. Chem. Soc. 2011, 133, 11641–11648.
[36]  Budyka, M.F.; Potashova, N.I.; Gavrishova, T.N.; Lee, V.M. Reconfigurable molecular logic gate operating in polymer film. J. Mater. Chem. 2009, 19, 7721–7724.
[37]  Andréasson, J.; Straight, S.D.; Bandyopadhyay, S.; Mitchell, R.H.; Moore, T.A.; Moore, A.L.; Gust, D. A molecule-based 1:2 digital demultiplexer. J. Phys. Chem. C 2007, 111, 14274–14278.
[38]  Perez-Inestrosa, E.; Montenegro, J.-M; Collado, D.; Suau, R. A molecular 1:2 demultiplexer. Chem. Commun. 2008, 9, 1085–1087.
[39]  Amelia, M.; Baroncini, M.; Credi, A. A simple unimolecular multiplexer/demultiplexer. Angew. Chem. Int. Ed. 2008, 47, 6240–6243.
[40]  Arugula, M.A.; Bocharova, V.; Halámek, J.; Pita, M.; Katz, E. Enzyme-based multiplexer and demultiplexer. J. Phys. Chem. B 2010, 114, 5222–5226.
[41]  Strack, G.; Ornatska, M.; Pita, M.; Katz, E. Biocomputing security system: Concatenated enzyme-based logic gates operating as a biomolecular keypad lock. J. Am. Chem. Soc. 2008, 130, 4234–4235.
[42]  Frezza, B.M.; Cockroft, S.L.; Ghadiri, M.R. Modular multi-level circuits from immobilized DNA-basde logic gates. J. Am. Chem. Soc. 2007, 129, 14875–14879.
[43]  López, M.V.; Vázquez, M.E.; Gómez-Reino, C.; Pedridoa, R.; Bermejo, M.R. A metallo-supramolecular approach to a half-subtractor. New J. Chem. 2008, 32, 1473–1477.
[44]  Pischel, U.; Heller, B. Molecular logic devices (half-subtractor, comparator, complementary output circuit) by controlling photoinduced charge transfer processes. New J. Chem. 2008, 32, 395–400.
[45]  Zhang, L.; Whitfield, W.A.; Zhu, L. Unimolecular binary half-adders with orthogonal chemical inputs. Chem. Commun. 2008, 16, 1880–1882.
[46]  Fang, C.J.; Zhu, Z.; Sun, W.; Xu, C.H.; Yan, C.H. New TTF derivatives: Several molecular logic gates based on their switchable fluorescent emissions. New J. Chem. 2007, 4, 580–586.
[47]  Lu, M.; Ma, X.; Fan, Y.-J.; Fang, C.-J.; Fu, X.-F.; Zhao, M.; Peng, S.-Q.; Yan, C.-H. Selective “turn-on” fluorescent chemosensors for Cu2+ based on anthracene. Inorg. Chem. Commun. 2011, 14, 1864–1867.
[48]  Fu, X.-F.; Yue, Y.-F.; Guo, R.; Li, L.-L.; Sun, W.; Fang, C.-J.; Xu, C.-H.; Yan, C.-H. An enhanced fluorescence in a tunable face-to-face π–π stacking assembly directed by the H-bonding. Cryst. Eng. Comm. 2009, 11, 2268–2271.
[49]  Rehm, D.; Weller, A. Rehm and Weller equation. Isr. J. Chem. 1970, 8, 259–276.
[50]  Grabowski, Z.R.; Dobkowski, J. Twisted intramolecular charge transfer (TICT) excited states: Energy and molecular structure. Pure Appl. Chem. 1983, 55, 245–252.
[51]  Beer, P.D.; Szemes, F.; Balzani, V.; Salà, C.M.; Drew, M.G.B.; Dent, S.W.; Maestri, M. Anion selective recognition and sensing by novel macrocyclic transition metal receptor systems. 1H NMR, electrochemical, and photophysical investigations. J. Am. Chem. Soc. 1997, 119, 11864–11875.
[52]  De Silva, A.P.; Gunaratne, H.Q.N.; Gunnlaugsson, T.; Huxley, A.J.M.; McCoy, C.P.; Rademacher, J.T.; Rice, T.E. Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 1997, 97, 1515–1566.
[53]  Rohatgi, K.K.; Singh, B.P. Solvent effect on anthracene monosulfonates in the first excited state. J. Phys. Chem. 1971, 75, 595–598.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133