全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Fusion-Triggered Switching of Enzymatic Activity on an Artificial Cell Membrane

DOI: 10.3390/s120505966

Keywords: liposome, enzyme, liposome fusion, self-assembly, phase transition, molecular device

Full-Text   Cite this paper   Add to My Lib

Abstract:

A nanosensory membrane device was constructed for detecting liposome fusion through changes in an enzymatic activity. Inspired by a biological signal transduction system, the device design involved functionalized liposomal membranes prepared by self-assembly of the following molecular components: a synthetic peptide lipid and a phospholipid as matrix membrane components, a Schiff’s base of pyridoxal 5’-phosphate with phosphatidylethanolamine as a thermo-responsive artificial receptor, NADH-dependent L-lactate dehydrogenase as a signal amplifier, and Cu2+ ion as a signal mediator between the receptor and enzyme. The enzymatic activity of the membrane device was adjustable by changing the matrix lipid composition, reflecting the thermotropic phase transition behavior of the lipid membranes, which in turn controlled receptor binding affinity toward the enzyme-inhibiting mediator species. When an effective fusogen anionic polymer was added to these cationic liposomes, membrane fusion occurred, and the functionalized liposomal membranes responded with changes in enzymatic activity, thus serving as an effective nanosensory device for liposome fusion detection.

References

[1]  Balzani, V.; Venturi, M.; Credi, A. Molecular Devices and Machines, 1st ed. ed.; Wiley-VCH: Weinheim, Germany, 2003.
[2]  Feringa, B.L. Molecular Switches, 1st ed. ed.; Wiley-VCH: Weinheim, Germany, 2001.
[3]  Goser, K; Glosekotter, P.; Dienstuhl, J. Nanoelectronics and Nanosystems, 1st ed. ed.; Springer-Verlag: Berlin, Germany, 2004.
[4]  Waser, R. Nanoelectronics and Information Technology, 1st ed. ed.; Wiley-VCH: Weinheim, Germany, 2003.
[5]  Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 4th ed. ed.; Garland Science: New York, NY, USA, 2002.
[6]  Kikuchi, J.; Ariga, K.; Ikeda, K. Signal Transduction Mediated by Artificial Cell-surface Receptors: Activation of Lactate Dehydrogenase Triggered by Molecular Recognition and Phase Reorganization of Bile Acid Derivatives Embedded in a Synthetic Bilayer Membrane. Chem. Commun. 1999, 6, 547–548.
[7]  Kikuchi, J.; Ariga, K.; Miyazaki, T.; Ikeda, K. An Artificial Signal Transduction System. Control of Lactate Dehydrogenase Activity Performed by an Artificial Cell-surface Receptor. Chem. Lett. 1999, 28, 253–254.
[8]  Fukuda, K.; Sasaki, Y.; Ariga, K.; Kikuchi, J. Dynamic Behavior of Transmembrane Molecular Switch as an Artificial Cell-surface Receptor. J. Mol. Catal. B 2001, 11, 971–976.
[9]  Tian, W.-J.; Sasaki, Y.; Ikeda, A.; Kikuchi, J.; Fan, S.-D. Intermolecular Communication on Lipid Bilayer Membrane. Control of Enzymatic Activity Triggered by a Lipid Signal. Chem. Lett. 2004, 33, 226–227.
[10]  Tian, W.-J.; Sasaki, Y.; Ikeda, A.; Kikuchi, J.; Song, X.-M.; Fan, S.-D. Construction of a Bio-inspired Signal Transduction System: Activation of Lactate Dehydrogenase Triggered by Lipid Signal Molecules on Bilayer Vesicles. Acta Chim. Sinica 2004, 62, 1230–1236.
[11]  Sasaki, Y.; Yamada, M.; Terashima, T.; Wang, J.-F.; Hashizume, M.; Fan, S.-D.; Kikuchi, J. Construction of Intermolecular Communication System on Cerasome as an Organic-Inorganic Nanohybrid. Kobunshi Ronbunshu 2004, 61, 541–546.
[12]  Tian, W.-J.; Sasaki, Y.; Fan, S.-D.; Kikuchi, J. Switching of Enzymatic Activity through Functional Connection of Molecular Recognition on Lipid Bilayer Membrane. Supramol. Chem. 2005, 17, 113–119.
[13]  Tian, W.-J.; Sasaki, Y.; Fan, S.-D.; Kikuchi, J. Intermolecular Communication on Lipid Bilayer Membrane. Tuning of Enzymatic Activity with Phase Transition of the Matrix Membranes. Bull. Chem. Soc. Jpn. 2005, 78, 715–717.
[14]  Kikuchi, J.; Ariga, K.; Sasaki, Y.; Ikeda, K. Control of Enzymic Activity by Artificial Cell-Surface Receptor. J. Mol. Catal. B 2001, 11, 977–984.
[15]  Sasaki, Y.; Mukai, M.; Kawasaki, A.; Yasuhara, K.; Kikuchi, J. Propagation and Amplification of Molecular Information Using a Photo-responsive Molecular Switch. Org. Biomol. Chem. 2011, 9, 2397–2402.
[16]  Mukai, M.; Sasaki, Y.; Maruo, K.; Kikuchi, J. Intermolecular Communication on a Liposomal Membrane. Enzymatic Amplification of a Photonic Signal with Gemini Peptide Lipid as a Membrane-bound Artificial Receptor. Chem. Eur. J. 2012, 18, 3258–3263.
[17]  Tamm, L.K.; Lai, A.L.; Li, Y. Combined NMR and EPR Spectroscopy to Determine Structuresof Viral Fusion Domains in Membranes. Biochim. Biophys. Acta. 2007, 1768, 3052–3060.
[18]  Yin, H.-S.; Wen, X.; Paterson, R.G.; Lamb, R.A.; Jardetzky, T.S. Structure of the Parainfluenza Virus 5 F Protein in Its Metastable, Prefusion Conformation. Nature 2006, 439, 38–44.
[19]  Whalley, T.; Timmers, K.; Coorssen, J.; Bezrukov, L.; Kingsley, D.H.; Zimmerberg, J. Calcium-Triggered Fusion of Exocytotic Granules Requires Proteins in Only One Membrane. J. Cell Sci. 2004, 117, 2345–2356.
[20]  Rybin, V.; Ullrich, O.; Rubino, M.; Alexandrov, K.; Simon, I.; Seabra, M.C.; Goody, R.; Zerial, M. GTPase Activity of Rab5 Acts as A Timer for Endocytic Membrane Fusion. Nature 1996, 383, 266–269.
[21]  Aronson, J.F. Nuclear Membrane Fusion in Fertilized Lytechinus Variegatus Eggs. J. Cell Biol. 1973, 58, 126–134.
[22]  Haas, A.; Wickner, W. Organelle Inheritance in a Test Tube: The Yeast Vacuole. Semin. Cell Dev. Biol. 1996, 7, 517–524.
[23]  Matsui, K.; Sasaki, Y.; Komatsu, T.; Mukai, M.; Kikuchi, J.; Aoyama, Y. RNAi Gene Silencing Using Cerasome as a Viral-Size siRNA-Carrier Free from Fusion and Cross-linking. Bioorg. Med. Chem. Lett. 2007, 17, 3935–3938.
[24]  Keren-Zur, M.; Beigel, M.; Loyter, A. Induction of Fusion in Aggregated and Nonaggregated Liposomes bearing Cationic Detergents. Biochim. Biophys. Acta 1989, 983, 253–258.
[25]  Murakami, Y.; Nakano, A.; Yoshimatsu, A.; Uchitomi, K.; Matsuda, Y. Characterization of Molecular Aggregates of Peptide Amphiphiles and Kinetics of Dynamic Processes Performed by Single-Walled Vesicles. J. Am. Chem. Soc. 1984, 106, 3613–3623.
[26]  Torchilin, V.P; Weissig, V. Liposomes, 2nd ed. ed.; Oxford Univ. Press: Oxford, UK, 2003.
[27]  Monnard, P.-A. Liposome-entrapped Polymerases as Models for Microscale/Nanoscale Bioreactors. J. Membr. Biol. 2003, 191, 87–97.
[28]  Lee, J.; Kim, H.-J.; Kim, J. Polydiacetylene Liposome Arrays for Selective Potassium Detection. J. Am. Chem. Soc. 2008, 130, 5010–5011.
[29]  Kikuchi, J.; Kamijyo, Y.; Etoh, H.; Murakami, Y. Catalytic Performance of a Supramolecular Bienzyme Complex Formed with Artificial Aminotransferase and Natural Lactate Dehydrogenase. Chem. Lett. 1996, 25, 427–428.
[30]  Wu, G.; Mikhailovsky, A.; Khant, H.A.; Fu, C.; Chiu, W.; Zasadzinski, J.A. Remotely Triggered Liposome Release by Near-Infrared Light Absorption via Hollow Gold Nanoshells. J. Am. Chem. Soc. 2008, 130, 8175–8177.
[31]  Sasaki, Y.; Shioyama, Y.; Tian, W.-J.; Kikuchi, J.; Hiyama, S.; Moritani, Y.; Suda, T. A Nanosensory Device Fabricated on a Liposome for Detection of Chemical Signals. Biotechnol. Bioeng. 2010, 105, 37–43.
[32]  Glaser, P.E.; Gross, R.W. Plasmenylethanolamine Facilitates Rapid Membrane Fusion: A Stopped-Flow Kinetic Investigation Correlating the Propensity of a Major Plasma Membrane Constituent to Adopt an HII Phase with Its Ability to Promote Membrane Fusion. Biochemistry 1994, 33, 5805–5812.
[33]  Mukai, M.; Maruo, K.; Kikuchi, J.; Sasaki, Y.; Hiyama, S.; Moritani, Y.; Suda, T. Photo- and Thermo-Responsive Assembly of Liposomal Membranes Triggered by a Gemini Peptide Lipid as a Molecular Switch. Supramol. Chem. 2009, 21, 284–291.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133