全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Simulation and Experimental Investigation of Structural Dynamic Frequency Characteristics Control

DOI: 10.3390/s120404986

Keywords: active control, dynamic frequency characteristics, neural network, simulation, experiment

Full-Text   Cite this paper   Add to My Lib

Abstract:

In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC) is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results.

References

[1]  Balas, M.J. Modal control of certain flexible dynamic systems. SIAM J. Control Optim. 1978, 16, 450–462.
[2]  Balas, M.J. Feedback control of flexible systems. IEEE Trans. Autom. Control 1978, 23, 673–679.
[3]  Meirovitch, L.; Oz, H. Modal-space control of large flexible spacecraft possessing ignorable coordinates. J. Guid. Control 1980, 3, 569–577.
[4]  Widrow, B.; Lehr, M.A. Thirty years of adaptive neural networks: Perceptron, madaline, and backpropagation. Proc. IEEE 1990, 78, 1415–1441.
[5]  Chomette, B.; Rémond, D.; Chesné, S.; Gaudiller, L. Semi-adaptive modal control of on-board electronic boards using an identification method. Smart Mater. Struct. 2008, doi:10.1088/0964-1726/17/6/065019.
[6]  Li, L.; Song, G.; Ou, J. Nonlinear structural vibration suppression using dynamic neural network observer and adaptive fuzzy sliding mode control. J. Vib. Control 2010, 16, 1503–1526.
[7]  Yue, H.H.; Sun, G.L.; Deng, Z.Q.; Tzou, H.S. Distributed shell control with a new multi-DOF photostrictive actuator design. J. Sound Vib. 2010, 329, 3647–3659.
[8]  Yan, T.H.; Xu, X.S.; Han, J.Q.; Lin, R.M.; Ju, B.F.; Li, Q. Optimization of sensing and feedback control for vibration/flutter of rotating disk by PZT actuators via air coupled pressure. Sensors 2011, 11, 3094–3116.
[9]  Radecki, P.P.; Farinholt, K.M.; Park, G.; Bement, M.T. Vibration suppression in cutting tools using a collocated piezoelectric sensor/actuator with an adaptive control algorithm. ASME J. Vib. Acoust. 2010, 132, 051002:1–051002:8.
[10]  Suzuki, Y.; Kagawa, Y. Active vibration control of a flexible cantilever beam using shape memory alloy actuators. Smart Mater. Struct. 2010, doi:10.1088/0964-1726/19/8/085014.
[11]  Ljung, L. System Identification; Prentice-Hall, NJ, USA: Englewood Cliffs, 1999.
[12]  Pintelon, R.; Guillaume, P.; Rolain, Y.; Schoukens, J. Parametric identification of transfer functions in the frequency domain-a survey. IEEE Trans. Autom. Control 1994, 39, 2245–2260.
[13]  Ferrara, E.R. Frequency-Domain Adaptive Filtering; Prentice-Hall, NJ, USA: Englewood Cliffs, 1985.
[14]  Pearson, J.T.; Goodall, R.M. Adaptive schemes for the active control of helicopter structural response. IEEE Trans. Control Syst. 1994, 2, 61–72.
[15]  Meurers, T.; Veres, S.M.; Tan, C.H. Model-free frequency domain iterative active sound and vibration control. Control Eng. Pract. 2003, 11, 1049–1059.
[16]  Fleischer, M. Modal state control in the frequency domain for active damping of mechanical vibrations in traction drive-trains. Proceedings of the 8th International Workshop on Advanced Motion Control, Kawasaki, Japan, 25–28 March 2004; pp. 171–176.
[17]  Gu, Z.Q.; Li, C.M.; Yang, W.D. Neural control in frequency domain for smart rotor. Proceedings of the 5th International Conference on Vibration Engineering, Nanjing, China, 18–20 September 2002; pp. 557–562.
[18]  Li, D.W.; Bai, H.B.; Tao, S.; Hou, J.F. Active vibration control design and experiment of the flexible plate with mixed uncertainty Viaμ-synthesis. Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China, 25–27 June 2008; pp. 7291–7296.
[19]  Kuo, S.M.; Yenduri, R.K.; Gupta, A. Frequency-domain delayless active sound quality control algorithm. J. Sound Vib. 2008, 318, 715–724.
[20]  Longman, R.W.; Xu, K.; Phan, M.Q. Design of repetitive controllers in the frequency domain for multi-input multi-output systems. Adv. Astronaut. Sci. 2008, 129, 1593–1612.
[21]  Sun, W.C.; Gao, H.J.; Kaynak, O. Finite frequency H∞ control for vehicle active suspension systems. IEEE Trans. Control Syst. Technol. 2011, 19, 416–422.
[22]  Zhang, X.W.; Chen, X.F.; Wang, X.Z.; He, Z.J. Multivariable finite elements based on B-spline wavelet on the interval for thin plate static and vibration analysis. Finite Elem. Anal. Des. 2010, 46, 416–427.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133