Cardiovascular disease is the leading cause of death worldwide, with high medical costs and rates of disability. It is therefore important to evaluate the use of cardiovascular biomarkers in the early diagnosis of coronary artery disease (CAD). We have screened a variety of recently identified bioactive peptides candidates in anticipation that they would allow detection of atherosclerotic CAD. Especially, we have focused on novel anti-atherogenic peptides as indicators and negative risk factors for CAD. In vitro, in vivo and clinical studies indicated that human adiponectin, heregulin-β1, glucagon-like peptide-1 (GLP-1), and salusin-α, peptides of 244, 71, 30, and 28 amino acids, respectively, attenuate the development and progression of atherosclerotic lesions by suppressing macrophage foam cell formation via down-regulation of acyl-coenzyme A: cholesterol acyltransferase-1. Circulating levels of these peptides in the blood are significantly decreased in patients with CAD compared to patients without CAD. Receiver operating characteristic analyses showed that salusin-α is a more useful biomarker, with better sensitivity and specificity, compared with the others for detecting CAD. Therefore, salusin-α, heregulin-β1, adiponectin, and/or GLP-1, alone or in various combinations, may be useful as biomarkers for atherosclerotic CAD.
References
[1]
Hochholzer, W.; Morrow, D.A.; Giugliano, R.P. Novel biomarkers in cardiovascular disease: Update 2010. Am. J. Cardiol. 2010, 160, 583–594.
[2]
Zakynthinos, E.; Pappa, N. Inflammatory biomarkers in coronary artery disease. J. Cardiol. 2009, 53, 317–333.
[3]
Corrado, E.; Rizzo, M.; Coppola, G.; Fattouch, K.; Novo, G.; Marturana, I.; Ferrara, F.; Novo, S. An update on the role of markers of inflammation in atherosclerosis. J. Atheroscler. Thromb. 2010, 17, 1–11.
[4]
Nagesh, C.M.; Roy, A. Role of biomarkers in risk stratification of acute coronary syndrome. Indian J. Med. Res. 2010, 132, 627–633.
[5]
Tsimikas, S. Oxidative biomarkers in the diagnosis and prognosis of cardiovascular disease. Am. J. Cardiol. 2006, 98(Suppl.), 9–17.
[6]
Watanabe, T.; Koba, S. Roles of serotonin in atherothrombosis and related diseases. Atherothrombosis 2012. in press.
[7]
Watanabe, T.; Arita, S.; Shiraishi, Y.; Suguro, T.; Sakai, T.; Hongo, S.; Miyazaki, A. Human urotensin II promotes hypertension and atherosclerotic cardiovascular diseases. Curr. Med. Chem. 2009, 16, 550–563.
[8]
Watanabe, T.; Sato, K.; Itoh, F.; Iso, Y.; Nagashima, M.; Hirano, T.; Shichiri, M. The roles of salusins in atherosclerosis and related cardiovascular diseases. J. Am. Soc. Hypertens. 2011, 5, 359–365.
[9]
Watanabe, T.; Sato, K.; Itoh, F.; Iso, Y. Pathogenic involvement of heregulin-β1 in anti-atherogenesis. Regul. Pept. 2012, 175, 11–14.
[10]
Barseghian, A.; Gawande, D.; Bajaj, M. Adiponectin and vulnerable atherosclerotic plaques. J. Am. Coll. Cardiol. 2011, 57, 761–770.
[11]
Nagashima, M.; Watanabe, T.; Terasaki, M.; Tomoyasu, M.; Nohtomi, K.; Kim-Kaneyama, J.; Miyazaki, A.; Hirano, T. Native incretins prevent the development of atherosclerotic lesions in apolipoprotein E knockout mice. Diabetologia 2011, 54, 2649–2659.
[12]
Allahverdian, S.; Pannu, P.S.; Francis, G.A. Contribution of monocyte-derived macrophages and smooth muscle cells to arterial foam cell formation. Cardiovasc. Res. 2012. in press.
[13]
Drucker, D.J. The biology of incretin hormones. Cell Metab. 2006, 3, 153–165.
[14]
Shichiri, M.; Ishimaru, S.; Ota, T.; Nishikawa, T.; Isogai, T.; Hirata, Y. Salusins: Newly identified bioactive peptides with hemodynamic and mitogenic activities. Nat. Med. 2003, 9, 1166–1172.
[15]
Chinetti, G.; Zawadski, C.; Fruchart, J.C.; Staels, B. Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARα, PPARγ, and LXR. Biochem. Biophys. Res. Commun. 2004, 314, 151–158.
[16]
Xu, G.; Watanabe, T.; Iso, Y.; Koba, S.; Sakai, T.; Nagashima, M.; Arita, S.; Hongo, S.; Ota, H.; Kobayashi, Y.; et al. Preventive effects of heregulin-β1 on macrophage foam cell formation and atherosclerosis. Circ. Res. 2009, 105, 500–510.
[17]
Russell, K.S.; Stern, D.F.; Polverini, P.J.; Bender, J.R. Neuregulin activation of ErbB receptors in vascular endothelium leads to angiogenesis. Am. J. Physiol. 1999, 277, H2205–H2211.
[18]
Arakawa, M.; Mita, T.; Azuma, K.; Ebato, C.; Goto, H.; Nomiyama, T.; Fujitani, Y.; Hirose, T.; Kawamori, R.; Watada, H. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 2010, 59, 1030–1037.
[19]
Ding, M.; Xie, Y.; Wagner, R.J.; Jin, Y.; Carrao, A.C.; Liu, L.S.; Guzman, A.K.; Powell, R.J.; Hwa, J.; Rzucidlo, E.M.; et al. Adiponectin induces vascular smooth muscle cell differentiation via repression of mammalian target of rapamycin complex 1 and FoxO4. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1403–1410.
[20]
Clement, C.M.; Thomas, L.K.; Mou, Y.; Croslan, D.R.; Gibbons, G.H.; Ford, B.D. Neuregulin-1 attenuates neointimal formation following vascular injury and inhibits the proliferation of vascular smooth muscle cells. J. Vasc. Res. 2007, 44, 303–312.
[21]
Ding, G.; Qin, Q.; He, N.; Francis-David, S.C.; Hou, J.; Liu, J.; Ricks, E.; Yang, Q. Adiponectin and its receptors are expressed in adult ventricular cardiomyocytes and upregulated by activation of peroxisome proliferator-activated receptor γ. J. Mol. Cell. Cardiol. 2007, 43, 73–84.
[22]
Iwamoto, R.; Yamazaki, S.; Asakura, M.; Takashima, S.; Hasuwa, H.; Miyado, K.; Adachi, S.; Kitakaze, M.; Hashimoto, K.; Raab, G.; et al. Heparin-binding EGF-like growth factor and ErbB signaling is essential for heart function. Proc. Natl. Acad. Sci. USA 2003, 100, 3221–3226.
[23]
Artinian, S.B.; Al Lafi, S.M.; Boutary, S.S.; Bitar, K.M.; Zwainy, N.S.; Bikhazi, A.B. Assessment of glucagon-like peptide-1 analogue and renin inhibitor on the binding and regulation of GLP-1 receptor in type 1 diabetic rat hearts. Exp. Diabetes Res. 2011, 2011, 489708.
[24]
Arita, Y.; Kihara, S.; Ouchi, N.; Maeda, K.; Kuriyama, H.; Okamoto, Y.; Kumada, M.; Hotta, K.; Nishida, M.; Takahashi, M.; et al. Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor induced common postreceptor signal in vascular smooth muscle cell. Circulation 2002, 105, 2893–2898.
[25]
Ouchi, N.; Walsh, K. Adiponectin as an anti-inflammatory factor. Clinica. Chimica. Acta 2007, 380, 24–30.
[26]
Xu, Z.; Ford, G.D.; Croslan, D.R.; Jiang, J.; Gates, A.; Allen, R.; Ford, B.D. Neuroprotection by neuregulin-1 following focal stroke is associated with the attenuation of ischemia-induced pro-inflammatory and stress gene expression. Neurobiol. Dis. 2005, 19, 461–470.
[27]
Motoshima, H.; Wu, X.; Mahadev, K.; Goldstein, B.J. Adiponectin suppresses proliferation and superoxide generation and enhances eNOS activity in endothelial cells treated with oxidized LDL. Biochem. Biophys. Res. Commun. 2004, 315, 264–271.
[28]
Timolati, F.; Ott, D.; Pentassuglia, L.; Giraud, M.N.; Perriard, J.C.; Suter, T.M.; Zuppinger, C. Neuregulin-1 beta attenuates doxorubicin-induced alterations of excitation-contraction coupling and reduces oxidative stress in adult rat cardiomyocytes. J. Mol. Cell. Cardiol. 2006, 41, 845–854.
Okamoto, Y.; Kihara, S.; Ouchi, N.; Nishida, M.; Arita, Y.; Kumada, M.; Ohashi, K.; Sakai, N.; Shimomura, I.; Kobayashi, H.; et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 2002, 106, 2767–2770.
[44]
Nagashima, M.; Watanabe, T.; Shiraishi, Y.; Morita, R.; Terasaki, M.; Arita, S.; Hongo, S.; Sato, K.; Shichiri, M.; Miyazaki, A.; et al. Chronic infusion of salusin-α and -β exerts opposite effects on atherosclerotic lesion development in apolipoprotein E-deficient mice. Atherosclerosis 2010, 212, 70–77.
[45]
Luo, N.; Liu, J.; Chung, B.H.; Yang, Q.; Klein, R.L.; Garvey, W.T.; Fu, Y. Macrophage adiponectin expression improves insulin sensitivity and protects against inflammation and atherosclerosis. Diabetes 2010, 59, 791–799.
[46]
Zhou, Y.; Wei, Y.; Wang, L.; Wang, X.; Du, X.; Sun, Z.; Dong, N.; Chen, X. Decreased adiponectin and increased inflammation expression in epicardial adipose tissue in coronary artery disease. Cardiovasc. Diabetol. 2011, 10, 2.
[47]
Nakano, Y.; Tajima, S.; Yoshimi, A.; Akiyama, H.; Tsushima, M.; Tanioka, T.; Negoro, T.; Tomita, M.; Tobe, T. A novel enzyme-linked immunosorbent assay specific for high-molecular-weight adiponectin. J. Lipid Res. 2006, 47, 1572–1582.
[48]
von Eynatten, M.; Humpert, P.M.; Bluemm, A.; Lepper, P.M.; Hamann, A.; Allolio, B; Nawroth, P.P.; Bierhaus, A.; Dugi, K.A. High-molecular weight adiponectin is independently associated with the extent of coronary artery disease in men. Atherosclerosis 2008, 99, 123–128.
[49]
Liang, K.W.; Sheu, W.H.; Lee, W.L.; Liu, T.J.; Ting, C.T.; Hsieh, Y.C.; Wang, K.Y.; Chen, Y.T.; Lee, W.J. Decreased circulating protective adiponectin level is associated with angiographic coronary disease progression in patients with angina pectoris. Int. J. Cardiol. 2008, 129, 76–80.
[50]
Broedl, U.C.; Lebherz, C.; Lehrke, M.; Stark, R.; Greif, M.; Becker, A.; von Ziegler, F.; Tittus, J.; Reiser, M.; Becker, C.; et al. Low adiponectin levels are an independent predictor of mixed and non-calcified coronary atherosclerotic plaques. PLoS One 2009, 4, e4733.
[51]
Baldasseroni, S.; Mannucci, E.; Orso, F.; Di Serio, C.; Pratesi, A.; Bartoli, N.; Marella, G.A.; Colombi, C.; Foschini, A.; Valoti, P.; et al. Adiponectin in outpatients with coronary artery disease: Independent predictors and relationship with heart failure. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 292–299.
[52]
Ky, B.; Kimmel, S.E.; Safa, R.N.; Putt, M.E.; Sweitzer, N.K.; Fang, J.C.; Sawyer, D.B.; Cappola, T.P. Neuregulin-1β is associated with disease severity and adverse outcomes in chronic heart failure. Circulation 2009, 120, 310–317.
[53]
Geisberg, C.A.; Wang, G.; Safa, R.N.; Smith, H.M.; Anderson, B.; Peng, X.Y.; Veerkamp, B.; Zhao, D.X.; Blakemore, D.; Yu, C.; et al. Circulating neuregulin-1β levels vary according to the angiographic severity of coronary artery disease and ischemia. Coron. Artery Dis. 2011, 22, 577–582.
[54]
Sato, K.; Koyama, T.; Tateno, T.; Hirata, Y.; Shichiri, M. Presence of immunoreactive salusin-α in human serum and urine. Peptides 2006, 27, 2561–2566.
[55]
Watanabe, T.; Suguro, T.; Sato, K.; Koyama, T.; Nagashima, M.; Kodate, S.; Hirano, T.; Adachi, M.; Shichiri, M.; Miyazaki, A. Serum salusin-α levels are decreased and correlated negatively with carotid atherosclerosis in essential hypertensive patients. Hypertens. Res. 2008, 31, 463–468.
[56]
Kimoto, S.; Sato, K.; Watanabe, T.; Suguro, T.; Koyama, T.; Shichiri, M. Serum levels and urinary excretion of salusin-α in renal insufficiency. Regul. Pept. 2010, 162, 129–132.
[57]
Ozgen, M.; Koca, S.S.; Dagli, N.; Balin, M.; Ustundag, B.; Isik, A. Serum salusin-alpha level in rheumatoid arthritis. Regul. Pept. 2010, 167, 125–128.
[58]
Ti, Y.; Wang, F.; Wang, Z.H.; Wang, X.L.; Zhang, W.; Zhang, Y.; Bu, P.L. Associations of serum salusin-α levels with atherosclerosis and left ventricular diastolic dysfunction in essential hypertension. J. Hum. Hypertens. 2012. in press.
[59]
Simsek, Y.; Celik, O.; Yilmaz, E.; Karaer, A.; Dogan, C.; Aydin, S.; Ozer, A. Serum levels of apelin, salusin-alpha, and salusin-beta in normal pregnancy and preeclampsia. J. Matern. Fetal. Neonatal. Med. 2012. in press.
[60]
Matsubara, J.; Sugiyama, S.; Sugamura, K.; Nakamura, T.; Fujiwara, Y.; Akiyama, E.; Kurokawa, H.; Nozaki, T.; Ohba, K.; Konishi, M.; et al. A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endothelial function and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. J. Am. Coll. Cardiol. 2012, 59, 265–276.
[61]
Lee, S.; Yabe, D.; Nohtomi, K.; Morita, R.; Seino, Y.; Hirano, T. Intact glucagon-like peptide-1 levels are not decreased in Japanese patients with type 2 diabetes. Endocr. J. 2011, 57, 119–126.
[62]
Nathanson, D.; Zethelius, B.; Berne, C.; Holst, J.J.; Sj?holm, A.; Nystr?m, T. Reduced plasma levels of glucagon-like peptide-1 in elderly men are associated with impaired glucose tolerance but not with coronary heart disease. Diabetologia 2010, 53, 277–280.
[63]
El-Menyar, A.; Rizk, N.; Al Nabti, A.D.; Hassira, S.A.; Singh, R.; Abdel Rahman, M.O.; Suwaidi, J.A. Total and high molecular weight adiponectin in patients with coronary artery disease. J. Cardiovasc. Med. 2009, 10, 310–315.
[64]
Brodov, Y.; Behar, S.; Goldenberg, I.; Boyko, V.; Chouraqui, P. Usefulness of combining serum uric acid and C-reactive protein for risk stratification of patients with coronary artery disease (Bezafibrate Infarction Prevention [BIP] study). Am. J. Cardiol. 2009, 104, 194–198.
[65]
Nathanson, D.; Zethelius, B.; Berne, C.; Lind, L.; Andrén, B.; Ingelsson, E.; Holst, J.J.; Nystr?m, T. Plasma levels of glucagon like peptide-1 associate with diastolic function in elderly men. Diabet. Med. 2011, 28, 301–305.
[66]
Kojima, S.; Funahashi, T.; Otsuka, F.; Maruyoshi, H.; Yamashita, T.; Kajiwara, I.; Shimomura, H.; Miyao, Y.; Fujimoto, K.; Sugiyama, S.; et al. Future adverse cardiac events can be predicted by persistently low plasma adiponectin concentrations in men and marked reductions of adiponectin in women after acute myocardial infarction. Atherosclerosis 2007, 194, 204–213.
[67]
Gao, R.; Zhang, J.; Cheng, L.; Wu, X.; Dong, W.; Yang, X.; Li, T.; Liu, X.; Xu, Y.; Li, X.; et al. A phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J. Am. Coll. Cardiol. 2010, 55, 1907–1914.
[68]
Jabbour, A.; Hayward, C.S.; Keogh, A.M.; Kotlyar, E.; McCrohon, J.A.; England, J.F.; Amor, R.; Liu, X.; Li, X.Y.; Zhou, M.D.; et al. Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur. J. Heart Fail. 2011, 13, 83–92.
[69]
Sokos, G.G.; Nikolaidis, L.A.; Mankad, S.; Elahi, D.; Shannon, R.P. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J. Card. Fail. 2006, 12, 694–699.
[70]
Read, P.A.; Hoole, S.P.; White, P.A.; Khan, F.Z.; O'Sullivan, M.; West, N.E.; Dutka, D.P. A pilot study to assess whether glucagon-like peptide-1 protects the heart from ischemic dysfunction and attenuates stunning after coronary balloon occlusion in humans. Circ. Cardiovasc. Interv. 2011, 4, 266–272.
[71]
Read, P.A.; Khan, F.Z.; Dutka, D.P. Cardioprotection against ischemia induced by dobutamine stress using glucagon-like peptide-1 in patients with coronary artery disease. Heart 2012, 98, 408–413.
[72]
Kondo, K.; Shibata, R.; Unno, K.; Shimano, M.; Ishii, M.; Kito, T.; Shintani, S.; Walsh, K.; Ouchi, N.; Murohara, T. Impact of a single intracoronary administration of adiponectin on myocardial ischemia/reperfusion injury in a pig model. Circ. Cardiovasc. Interv. 2010, 3, 166–173.