全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Estimating Sugarcane Yield Potential Using an In-Season Determination of Normalized Difference Vegetative Index

DOI: 10.3390/s120607529

Keywords: sugarcane, nitrogen, NDVI, precision agriculture

Full-Text   Cite this paper   Add to My Lib

Abstract:

Estimating crop yield using remote sensing techniques has proven to be successful. However, sugarcane possesses unique characteristics; such as, a multi-year cropping cycle and plant height-limiting for midseason fertilizer application timing. Our study objective was to determine if sugarcane yield potential could be estimated using an in-season estimation of normalized difference vegetative index (NDVI). Sensor readings were taken using the GreenSeeker? handheld sensor from 2008 to 2011 in St. Gabriel and Jeanerette, LA, USA. In-season estimates of yield (INSEY) values were calculated by dividing NDVI by thermal variables. Optimum timing for estimating sugarcane yield was between 601–750 GDD. In-season estimated yield values improved the yield potential (YP) model compared to using NDVI. Generally, INSEY value showed a positive exponential relationship with yield (r2 values 0.48 and 0.42 for cane tonnage and sugar yield, respectively). When models were separated based on canopy structure there was an increase the strength of the relationship for the erectophile varieties (r2 0.53 and 0.47 for cane tonnage and sugar yield, respectively); however, the model for planophile varieties weakened slightly. Results of this study indicate using an INSEY value for predicting sugarcane yield shows potential of being a valuable management tool for sugarcane producers in Louisiana.

References

[1]  Legendre, B.L.; Sanders, F.S.; Gravois, K.A. Sugarcane Production Best Management Practices; Louisiana State University Agriculture Center: Baton Rouge, LA, USA, 2000; p. 2833.
[2]  Johnson, A.E. Efficient use of nutrients in agriculture production systems. Comm. Soil Sci. Plant Anal. 2000, 31, 1599–1620.
[3]  Wiedenfeld, B. Effects of irrigation and N fertilizer application on sugarcane yield and quality. Field Crop Res. 1995, 43, 101–108.
[4]  Ma, B.L.; Subedi, K.D.; Costa, C. Comparison of crop-based indicators with soil nitrate test for corn nitrogen management. Agron. J. 2005, 97, 462–471.
[5]  Wilson, W.S. Advances in Soil Organic Matter Research: The Impact of Agriculture and the Environment; Royal society of Chemistry: Cambridge, UK, 1991.
[6]  Johnson, G.V.; Raun, W.R.; Zhang, H.; Hattey, J.A. Soil Fertility Handbook; Oklahoma Agriculture Experiment Station: Stillwater, OK, USA, 1997.
[7]  Schmitt, M.A.; Randall, G.W.; Rehm, G.W. A Soil Nitrogen Test Option for Nitrogen Recommendations with Corn FO-06514-GO; University of Minnesota Extension Service: St. Paul, MN, USA, 1998.
[8]  Rudorff, B.F.T.; Batista, G.T. Yield estimation of sugarcane based on agrometeorolgical-spectral models. Remote Sens. Environ. 1990, 33, 183–192.
[9]  Wiedenfeld, B. Evaluation of new tolls for determining crop nitrogen status and availability. Subtrop. Plant Sci. 1997, 49, 46–49.
[10]  Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150.
[11]  Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Mullens, R.W.; Freeman, K.W.; Thomason, W.E.; Lukina, E.V. Improving nitrogen use efficiency in cereal grain production with sensing and variable rate applications. Agron. J. 2002, 94, 815–820.
[12]  Zhao, D.; Reddy, K.R.; Kakani, K.G.; Read, J.J.; Carter, G.A. Corn growth, leaf pigment concentration, photosynthesis, and leaf hyper-spectral reflectance properties as affected by nitrogen supply. Plant Soil 2003, 257, 205–217.
[13]  Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Lukina, E.V.; Thomason, W.E.; Schepers, J.S. In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agron. J. 2001, 93, 131–138.
[14]  Teal, R.K.; Tubana, B.S.; Girma, K.; Freeman, K.W.; Arnall, D.B.; Walsh, O.; Raun, W.R. In-season prediction of corn grain yield potential using normalized difference vegetation index. Agron. J. 2006, 98, 1488–1494.
[15]  Harrell, D.L.; Tubana, B.S.; Walker, T.S.; Phillips, S.B. Estimating rice grain yield potential using normalized difference vegetation index. Agron. J. 2011, 103, 1717–1723.
[16]  Lukina, E.V.; Raun, W.R.; Stone, M.L.; Solie, J.B.; Johnson, G.V.; Lees, H.L.; Laruffa, J.M.; Phillips, S.B. Effect of row spacing, growth stages, and nitrogen rate on spectral irradiance in winter wheat. J. Plant Nutr. 2000, 23, 103–122.
[17]  Kachansoki, R.G.; O'Halloran, I.P.; Aspinall, D.; von Bertoldi, P. Delta yield: mapping fertilizer nitrogen requirement for crops. Better Crops 1996, 80, 20–23.
[18]  Olf, H.W.; Blankenau, K.; Brentrupm, F.; Jasper, J.; Link, A.; Lammel, J. Soil- and plant-based nitrogen fertilizer recommendations in arable farming. J. Plant Nutr. Soil Sci. 2005, 168, 414–431.
[19]  Tremblay, N.; Belec, C. Adopting nitrogen fertilization to unpredictable season conditions with the least impact on the environment. Hort. Technol. 2006, 16, 408–412.
[20]  Zillman, E.; Graefe, S.; Link, J.; Batchelor, W.D.; Claupein, W. Assessment of cereal nitrogen requirement derived by optical on-the-go sensors on heterogeneous soils. Agron. J. 2006, 98, 682–690.
[21]  Abdel-Rahman, E.M.; Ahmed, F.B. The application of remote sensing techniques to sugarcane (Saccarum spp. Hybrid) production: A review of the literature. Int. J. Remote Sens. 2008, 29, 3753–3767.
[22]  Begue, A.; Lebourgeois, V.; Bappel, E.; Todoroff, P.; Pellegrino, A.; Baillarin, F.; Siegmond, B. Spatio-temproal variability of sugarcane fields and recommendations for yield forecasting using NDVI. Int. J. Remote. Sens. 2010, 31, 5391–5407.
[23]  Begue, A.; Todoroff, P.; Pater, J. Multi-time scale analysis of sugarcane within-field variability: improved crop diagnosis using satellite time series. Precis. Agric. 2008, 9, 161–171.
[24]  Simoes, M.D.S.; Rocha, J.V.; Lamparelli, R.A.C. Spectral variables, growth analysis and yield of sugarcane. Sci. Agric. 2005, 62, 199–207.
[25]  Rao, P.V.K.; Rao, V.V.; Venkataratnam, L. Remote sensing: A technology for assessment of sugarcane crop acreage and yield. Sugar Tech 2002, 4, 97–101.
[26]  Tew, T.L.; Burner, D.M.; Legendre, B.L.; White, W.H.; Grisham, M.P.; Dufrence, E.O.; Garrison, D.D.; Veremis, J.C.; Pan, Y.B.; Richard, E.P. Registration of ‘HoCP95-988’ sugarcane. Crop Sci. 2005, 45, 1660.
[27]  Gravois, K.A.; Bischoff, K.P.; Milligan, S.B.; Martin, F.A.; Hoy, J.W.; Reagan, T.E.; Kimbeng, C.A.; Laborde, C.M.; Hawkins, G.L. Registration of ‘L97-128’ sugarcane. J. Plant Res. 2008, 2, 24–28.
[28]  Bischoff, K.P.; Gravois, K.A.; Reagan, T.E.; Hoy, J.W.; Laborde, C.M.; Kimbeng, C.A.; Hawkins, G.L.; Pontif, M.J. Registration of ‘L99-226’ sugarcane. J. Plant Regis. 2009, 3, 241–247.
[29]  Gravois, K.A.; Bischoff, K.P.; Hoy, J.W.; Reagan, T.E.; Laborde, C.M.; Kimbeng, C.A.; Hawkins, G.L.; Pontif, M.J. Registration of ‘L99-233’ sugarcane. J. Plant Regis. 2009, 3, 248–252.
[30]  Milligan, S.B.; Martin, F.A.; Bishoff, K.P.; Quebedeaux, K.P.; Defrene, E.O.; Quebedeaux, K.L.; Hoy, J.W.; Reagan, T.E.; Legendre, B.L. Registration of ‘LCP85-384’ sugarcane. Crop Sci. 1994, 34, 819–820.
[31]  Tew, T.L.; White, W.H.; Legendre, B.L.; Grisham, M.P.; Dufrene, E.O.; Garrison, D.D.; Veremis, J.C.; Pan, Y.B.; Richard, E.P.; Miller, J.D. Registration of ‘HoCP96-540’ sugarcane. Crop Sci. 2005, 45, 785–786.
[32]  Gravois, K.A.; Bischoff, K.P.; Laborde, C.M.; Hoy, J.W.; Reagan, T.E.; Pontif, M.J.; Kimbeng, C.A.; Hawkins, G.L.; Sexton, D.R.; Fontenot, D.P. Registration of ‘L01-283’ sugarcane. J. Plant Res. 2010, 4, 183–188.
[33]  Barger, G.L. Total Growing Degree Days. In Weekly Weather and Crop Bulletin; US Department of Commerce and USDA: Washington, DC, USA, 1969.
[34]  The SAS System for Windows: Version 9.0; SAS: Cary, NC, USA, 2009.
[35]  Johnson, R.M.; Richard, R.P. Sugarcane yield, sugarcane quality, and soil variability in Louisiana. Agron. J. 2005, 97, 760–771.
[36]  Gascho, G.J. Water-sugarcane relationship. Sugar J. 1985, 48, 11–17.
[37]  Kwong, K.F.N.; Deville, J. The course of fertilizer nitrogen uptake by rain-fed sugarcane in Mauritius. J. Agric. Sci. 1994, 122, 385–391.
[38]  Flowers, M.; Weisz, R.; Heiniger, R.; Osmond, D.; Crozie, C. In-season optimization and site-specific nitrogen management for soft red winter wheat. Agron. J. 2004, 96, 124–134.
[39]  Inman-Barber, N.G. Temperature and seasonal effect on canopy development and light interception of sugarcane. Field Crop Res. 1994, 36, 41–51.
[40]  Robertson, M.J.; Bonnett, G.D.; Hughes, R.M.; Muschow, R.C.; Campbell, J.A. Temperature and leaf are expansion of sugarcane: Integration of controlled-environments, field, and model studies. Aust. J. Plant Physiol. 1998, 25, 819–828.
[41]  Sinclair, T.R.; Gilbert, R.A.; Perdomo, R.E.; Shine, J.M.; Powell, G.; Montes, G. Sugarcane leaf area development under field conditions in Florida, USA. Field Crop Res. 2004, 88, 171–178.
[42]  Galvao, L.S.; Formaggio, A.R.; Tisot, D.A. Discrimination of sugarcane varieties of southeastern Brazil with EO-1 hyperion data. Remote Sens. Environ. 2005, 94, 523–534.
[43]  Tejera, N.A.; Rodes, R.; Ortega, E.; Campos, R.; Lluch, C. Comparative analysis of physiological characteristics and yield components in sugarcane cultivars. Field Crop Res. 2007, 102, 64–72.
[44]  Marchiori, P.E.R.; Ribeiro, R.V.; da Silva, L.; Machado, R.S.; Machado, E.C.; Scarpari, M.S. Plant growth, canopy photosynthesis, and light availability in three sugarcane varieties. Sugar Tech. 2010, 12, 160–166.
[45]  Tubana, B.S.; Harrell, D.; Walker, T.; Teboh, J.; Lofton, J.; Kanke, Y.; Phillips, S. Relationship of spectral vegetation indices with rice biomass and grain yield at different sensor view angles. Agron. J. 2011, 103, 1405–1413.
[46]  Hodgen, P.J.; Raun, W.R.; Johnson, G.V.; Teal, R.K.; Freeman, K.W.; Krixey, K.B.; Martin, K.L.; Solie, J.B.; Stone, M.L. Relationship between response indices measure in-season and at harvest in winter wheat. J. Plant Nutr. 2005, 28, 221–235.
[47]  Raun, W.R.; Solie, J.B.; Stone, M.L. Independence of yield potential and crop nitrogen response. Precis. Agric. 2011, 12, 508–518.
[48]  Lofton, J.; Tubana, B.S.; Kanke, Y.; Teboh, J.; Viator, H. Predicting sugarcane response to nitrogen using a canopy reflectance-based response index value. Agron. J. 2012, 104, 106–113.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133