全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Spatial Heterogeneity of Autoinducer Regulation Systems

DOI: 10.3390/s120404156

Keywords: autoinducer regulation network, spatial heterogeneity, division of work, hybrid push/pull control, quorum sensing

Full-Text   Cite this paper   Add to My Lib

Abstract:

Autoinducer signals enable coordinated behaviour of bacterial populations, a phenomenon originally described as quorum sensing. Autoinducer systems are often controlled by environmental substances as nutrients or secondary metabolites (signals) from neighbouring organisms. In cell aggregates and biofilms gradients of signals and environmental substances emerge. Mathematical modelling is used to analyse the functioning of the system. We find that the autoinducer regulation network generates spatially heterogeneous behaviour, up to a kind of multicellularity-like division of work, especially under nutrient-controlled conditions. A hybrid push/pull concept is proposed to explain the ecological function. The analysis allows to explain hitherto seemingly contradicting experimental findings.

References

[1]  Williams, P.; Winzer, K.; Chan, W.; Camara, M. Look who's talking: Communication and quorum sensing in the bacterial world. Philos. Trans. R. Soc. B 2007, 362, 1119–1134, doi:10.1098/rstb.2007.2039.
[2]  Goryachev, A. Understanding bacterial cell-cell communication with computational modelling. Chem. Rev. 2011, 111, 238–250, doi:10.1021/cr100286z. 21175123
[3]  Fuqua, W.; Winans, S.; Greenberg, E. Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol 1994, 176, 269–275. 8288518
[4]  Lenz, A.; Williamson, K.; Pitts, B.; Stewart, P.; Franklin, M. Localized gene expression in Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol 2008, 74, 4463–4471, doi:10.1128/AEM.00710-08. 18487401
[5]  Perez-Osorio, A.; Williamson, K.; Franklin, M. Heterogeneous rpoS and rhlR mRNA levels and 16S rRNA/rDNA (rRNA gene) ratios within Pseudomonas aeruginosa biofilms, sampled by laser capture microdissection. J. Bacteriol 2010, 192, 2991–3000, doi:10.1128/JB.01598-09. 20348255
[6]  De Kievit, T.; Gillis, R.; Marx, S.; Brown, C.; Iglewski, B. Quorum sensing genes in Pseudomonas aeruginosa biofilms: Their role and expression patterns. Appl. Environ. Microbiol. 2001, 67, 1865–1873, doi:10.1128/AEM.67.4.1865-1873.2001. 11282644
[7]  Chopp, D.; Kiritis, M.; Moran, B.; Parsek, M. A mathematical model of quorum sensing in a growing bacterial biofilm. J. Ind. Microbiol. Biotechnol. 2007, 29, 339–346.
[8]  Kirisits, M.; Margolis, J.; Purevdorj-Gage, B.; Vaughan, B.; Chopp, D.; Stoodley, P.; Parsek, M. Influence of the hydrodynamic environment on quorum sensing in Pseudomonas aeruginosa biofilms. J. Bacteriol. 2007, 189, 8357–8360, doi:10.1128/JB.01040-07. 17704224
[9]  Goryachev, A.; Toh, D.; Wee, K.; Lee, T.; Zhang, H.; Zhang, L. Transition to quorum sensing in an Agrobacterium population: A stochastic model. PLoS Comput. Biol. 2005, doi:10.1371/journal.pcbi.0010037.
[10]  Ulitzur, S. The regulatory control of the bacterial luminescence system—A new view. J. Biolumin. Chemilum 1989, 4, 317–325, doi:10.1002/bio.1170040144.
[11]  Englmann, M.; Fekete, A.; Kuttler, C.; Frommberger, M.; Li, X.; Gebefügi, I.; Schmitt-Kopplin, P. The hydrolysis of unsubstituted N-acylhomoserine lactones to their homoserine metabolites; Analytical approaches using ultra performance liquid chromatography. J. Chromotogr 2007, 1160, 184–193, doi:10.1016/j.chroma.2007.05.059.
[12]  Dockery, J.; Keener, J. A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bull. Math. Biol. 2001, 63, 95–116, doi:10.1006/bulm.2000.0205. 11146885
[13]  Meyer, A.; Megerle, J.; Kuttler, C.; Müller, J.; Aguilar, C.; Eberl, L.; Hense, B.; R?dler, J. Dynamics of AHL mediated quorum sensing under flow and non-flow conditions. Phys. Biol. 2012. in press.
[14]  Vuong, C.; Kocianova, S.; Yao, Y.; Carmody, A.; Otto, M. Increased microcolonization of indwelling medical devices by quorum-sensing mutants of Staphylococcus epidermidis in vivo. J. Infect. Dis. 2004, 190, 1498–1505, doi:10.1086/424487. 15378444
[15]  Yarwood, J.; Bartels, D.; Volper, E.; Greenberg, E. Quorum sensing in Staphylococcus aureus biofilms. J. Bacteriol. 2004, 186, 1838–1850, doi:10.1128/JB.186.6.1838-1850.2004. 14996815
[16]  Redfield, R. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 2002, 10, 365–370, doi:10.1016/S0966-842X(02)02400-9. 12160634
[17]  Hense, B.; Kuttler, C.; Müller, J.; Rothballer, M.; Hartmann, A.; Kreft, J.U. Does efficiency sensing unify diffusion and quorum sensing? Nat. Rev. Microbiol. 2007, 5, 230–239, doi:10.1038/nrmicro1600. 17304251
[18]  Olhager, J.; ?stlund, B. An integrated push-pull manufactoring strategy. Eur. J. Oper. Res. 2009, 45, 135–142.
[19]  Peters, A.; Langemann, D. Build-ups in the supply chain of the brain: On the neuroenergetic cause of obesity and type 2 diabetes mellitus. Front. Neuroenerg. 2009, 1, 1–15.
[20]  Newton, J.; Fray, R. Integration of environmental and host-derived signals with quorum sensing during plant-microbe interactions. Cell. Microbiol. 2004, 6, 213–224, doi:10.1111/j.1462-5822.2004.00362.x. 14764105
[21]  Hedge, M.; Wood, T.; Jayaraman, A. The neuroendocrine hormone norepinephrine increases Pseudomonas aeruginosa PA14 virulence through the las quorum-sensing pathway. Appl. Microbiol. Biotechnol. 2009, 84, 763–776, doi:10.1007/s00253-009-2045-1. 19517106
[22]  Van Delden, C.; Comte, R.; Bally, M. Stringent response activates quorum sensing and modulates cell density dependent gene expression in Pseudomonas aeruginosa. J. Bacteriol. 2001, 183, 5376–5384, doi:10.1128/JB.183.18.5376-5384.2001. 11514523
[23]  Jacob, E.; Shapira, Y.; Tauber, A. Seeking the foundations of cognition in bacteria: From Schroedinger's negative entropy to latent information. Physica A 2006, 369, 495–524.
[24]  Leisner, M.; Stingl, K.; Frey, E.; Maier, B. Stochastic switching to competence. Curr. Opin. Microbiol. 2008, 11, 553–559, doi:10.1016/j.mib.2008.09.020. 18955155
[25]  Anetzberger, C.; Pirch, T.; Jung, K. Heterogeneity in quorum sensing-regulated bioluminescence in Vibrio harveyi. Mol. Microbiol. 2009, 73, 267–277, doi:10.1111/j.1365-2958.2009.06768.x. 19555459
[26]  Schuster, M.; Lostroh, C.; Ogi, T.; Greenberg, E. Identification, timing, and signal specifity of Pseudomonas aeruginosa quorum-controlled genes: A transcriptome analysis. J. Bacteriol. 2003, 185, 2066–2079, doi:10.1128/JB.185.7.2066-2079.2003. 12644476
[27]  Venturi, V. Regulation of quorum sensing in Pseudomonas. FEMS Microbiol. Rev. 2008, 30, 274–291.
[28]  Winzer, K.; Hardie, K.; Williams, P. Bacterial cell-to-cell communication: Sorry, can't talk now—Gone to lunch. Curr. Opin. Microbiol. 2002, 5, 216–222, doi:10.1016/S1369-5274(02)00304-1. 11934621
[29]  Dunlap, P.; Kita-Tsukamoto, K.; Waterbury, J.; Callahan, S. Isolation and characterization of a visibly luminous variant of Vibriofischeri strain ES114 from the sepiolid squid Euprymna scolopes. Arch. Microbiol. 1995, 164, 194–202, doi:10.1007/BF02529971.
[30]  Ruby, E.; Asato, L. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch. Microbiol. 1993, 159, 160–167, doi:10.1007/BF00250277. 8439236
[31]  Dunlap, P. Physiological and morphological state of the symbiotic bacteria from light organs of ponyfish. Biol. Bull. 1984, 164, 410–425.
[32]  Karl, D.; Nealson, K. Regulation of cellular metabolism during synthesis and expression of the luminous system in Beneckea and Photobacterium. J. Gen. Microbiol. 1980, 114, 357–368.
[33]  Horswill, A.; Stoodley, P.; Stewart, P.; Parsek, M. The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal. Bioanal. Chem. 2007, 387, 371–380, doi:10.1007/s00216-006-0720-y. 17047948
[34]  Hobbie, R. Intermediate Physics for Medicine and Biology; Wiley: London, UK, 1988.
[35]  Kaplan, H.; Greenberg, E. Diffusion of autoinducers is involved in regulation of the Vibrio fischeri luminescence system. J. Bacteriol. 1985, 163, 1210–1214. 3897188
[36]  Fekete, A.; Kuttler, C.; Rothballer, M.; Hense, B.; Fischer, D.; Buddrus-Schiemann, K.; Lucio, M.; Müller, J.; Schmitt-Kopplin, P.; Hartmann, A. Dynamic regulation of N-acyl-homoserine lactone production and degradation in Pseudomonas putida IsoF. FEMS Microbiol. Ecol. 2010, 72, 22–34, doi:10.1111/j.1574-6941.2009.00828.x. 20100181
[37]  Gray, K.; Greenberg, E. Physical and functional maps of the luminescence gene cluster in an autoinducer-deficient Vibrio fischeri strain isolated from a squid light organ. J. Bacteriol. 1992, 174, 4384–4390. 1624432
[38]  Dunlap, P.; Kuo, A. Cell density-dependent modulation of the Vibrio fischeri luminescence system in absence of autoinducer and LuxR protein. J. Bacteriol. 1992, 174, 2440–2448. 1313412

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133