全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Acoustic Transmitters for Underwater Neutrino Telescopes

DOI: 10.3390/s120404113

Keywords: acoustic transceiver, sensor array, underwater neutrino telescopes, calibration, positioning systems, parametric sources

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters.

References

[1]  Ardid, M. Positioning system of the ANTARES neutrino telescope. Nucl. Instr. Meth. A 2009, 602, 174–176.
[2]  Askariyan, G.A.; Dolgoshein, B.A.; Kalinovsky, A.N.; Mokhov, N.V. Acoustic detection of high energy particle showers in water. Nucl. Instr. Meth. 1979, 164, 267–278.
[3]  Ageron, M.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; Ameli, F.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M. ANTARES Collaboration. ANTARES: The first undersea neutrino telescope. Nucl. Instr. Meth. A 2011, 656, 11–38.
[4]  The KM3NeT Collaboration. KM3NeT Technical Design Report, 2010. Available online: www.km3net.org (accessed on 20 March 2012).
[5]  Aguilar, J.A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A.C.; Astraatmadja, T. ANTARES Collaboration. Time calibration of the ANTARES neutrino telescope. Astrop. Phys. 2011, 34, 539–549.
[6]  Bevan, S.; Brown, A.; Danaher, S.; Perkin, J.; Rhodes, C.; Sloan, T.; Thompson, L.; Veledar, O.; Waters, D. ACORNE Collaboration. Study of the acoustic signature of UHE neutrino interactions in water and ice. Nucl. Instr. and Meth. A 2009, 607, 398–411.
[7]  Aguilar, J.A.; Al Samarai, I.; Albert, A.M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A.C.; Astraatmadja, T.; Aubert, J.-J. ANTARES Collaboration. AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope. Nucl. Instr. Meth. A 2011, 626, 128–143.
[8]  Ardid, M. Calibration in acoustic detection of neutrinos. Nucl. Instr. Meth. A 2009, 604, S203–S207.
[9]  Sherman, C.H.; Butler, J.L. Transducers and Array for Underwater Sound; Springer: New York, NY, USA, 2007.
[10]  Ardid, M.; Bou-Cabo, M.; Camarena, F.; Espinosa, V.; Larosa, G.; Llorens, C.D.; Martínez-Mora, J.A. A prototype for the acoustic triangulation system of the KM3NeT deep sea neutrino telescope. Nucl. Instr. Meth. A 2010, 617, 459–461.
[11]  Llorens, C.D.; Ardid, M.; Sogorb, T.; Bou-Cabo, M.; Martínez-Mora, J.A.; Larosa, G.; Adrián-Martínez, S. The sound emission board of the KM3NeT acoustic positioning system. J. Instrum. 2012, 7, C01001.
[12]  Barr, M. Introduction to pulse width modulation. Embed. Syst. Program. 2001, 14, 103–104.
[13]  Simeone, F.; Ameli, F.; Ardid, M.; Bertin, V.; Bonori, M.; Bou-Cabo, M.; Calì, C.; D'Amico, A.; Giovanetti, G.; Imbesi, M.; et al. Design and first tests of an acoustic positioning and detection system for KM3NeT. Nucl. Instr. Meth. A 2012, 662, S246–S248.
[14]  Larosa, G.; Ardid, M.; Llorens, C.D.; Bou-Cabo, M.; Martínez-Mora, J.A.; Adrián-Martínez, S. Development of an acoustic transceiver for the KM3NeT positioning system. Nucl. Instr. Meth. A 2012. accepted.
[15]  Westervelt, P.J. Parametric acoustic array. J. Acoust. Soc. Am. 1963, 35, 535–537.
[16]  Moffett, M.B.; Mello, P. Parametric acoustic sources of transient signals. J. Acoust. Soc. Am. 1979, 66, 1182–1187.
[17]  Ardid, M.; Bou-Cabo, M.; Camarena, F.; Espinosa, V.; Larosa, G.; Martínez-Mora, J.A.; Ferri, M. Use of parametric acoustic sources to generate neutrino-like signals. Nucl. Instr. Meth. A 2009, 604, S208–S211.
[18]  Ardid, M.; Adrián, S.; Bou-Cabo, M.; Larosa, G.; Martínez-Mora, J.A.; Espinosa, V.; Camarena, F.; Ferri, M. R&D studies for the development of a compact transmitter able to mimic the acoustic signature of a UHE neutrino interaction. Nucl. Instr. Meth. A 2012, 662, S206–S209.
[19]  Francois, R.E.; Garrison, G.R. Sound absorption based on ocean measurements. Part I: Pure water and magnesium sulfate contributions. J. Acoust. Soc. Am. 1982, 72, 896–907.
[20]  Francois, R.E.; Garrison, G.R. Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption. J. Acoust. Soc. Am. 1982, 72, 1879–1890.
[21]  Ardid, M.; Bou-Cabo, M.; Camarena, F.; Espinosa, V.; Larosa, G.; Llorens, C.D.; Martínez-Mora, J.A. R&D towards the acoustic positioning system of KM3NeT. Nucl. Instr. Meth. A 2011, 626-627, S214–S216.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133