全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Dynamic Sensing of Localized Corrosion at the Metal/Solution Interface

DOI: 10.3390/s120404962

Keywords: localized corrosion, interfaces, Mach-Zehnder interferometer

Full-Text   Cite this paper   Add to My Lib

Abstract:

A Mach-Zehnder interferometer is employed to detect localized corrosion at the metal/solution interface in the potentiodynamic sweep of the iron electrode in solutions. During the electrochemical reactions, local variations of the electrolyte’s refractive index, which correlate with the concentration of dissolved species, change the optical path length (OPL) of the object beam when the beam passes through the electrolyte. The distribution of the OPL difference was obtained to present the concentration change of the metal ions visually, which enable direct evidence of corrosion processes. The OPL difference distribution shows localized and general corrosion during the anodic dissolution of the iron electrode in solutions with and without chloride ions, respectively. This method provides an approach for dynamic detection of localized corrosion at the metal/solution interface.

References

[1]  Kaesche, H. Corrosion of Metals: Physicochemcial Principles and Current Problems; Springer-Verlag: Berlin/Heidelberg, Germany, 2003.
[2]  Sazou, D.; Pagitsas, M. Nitrate ion effect on the passive film breakdown and current oscillations at iron surfaces polarized in chloride-containing sulfuric acid solutions. Electrochim. Acta 2002, 47, 1567–1578.
[3]  Pagitsas, M.; Sazou, D. Current oscillations induced by chlorides during the passive-active transition of iron in a sulfuric acid solution. J. Electroanal. Chem. 1999, 471, 132–145.
[4]  Sazou, D.; Diamantopoulou, A.; Pagitsas, M. Chemical perturbation of the passive-active transition state of Fe in a sulfuric acid solution by adding halide ions. Current oscillations and stability of the iron oxide film. Electrochim. Acta 2000, 45, 2753–2769.
[5]  Szklarska-Smialowska, Z. Mechanism of pit nucleation by electrical breakdown of the passive film. Corros. Sci. 2002, 44, 1143–1149.
[6]  Punckt, C.; Bolscher, M.; Rotermund, H.H.; Mikhailov, A.S.; Organ, L.; Budiansky, N.; Scully, J.R.; Hudson, J.L. Sudden onset of pitting corrosion on stainless steel as a critical phenomenon. Science 2004, 305, 1133–1136.
[7]  Leung, C.K.Y.; Wan, K.T.; Chen, L.Q. A novel optical fiber sensor for steel corrosion in concrete structures. Sensors 2008, 8, 1960–1976.
[8]  Pereira, E.V.; Figueira, R.B.; Salta, M.M.L.; Fonseca, I.T.E. A galvanic sensor for monitoring the corrosion condition of the concrete reinforcing steel: relationship between the galvanic and the corrosion currents. Sensors 2009, 9, 8391–8398.
[9]  Zhao, X.F.; Gong, P.; Qiao, G.F.; Lu, J.; Lv, X.J.; Qu, J.P. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method. Sensors 2011, 11, 10798–10819.
[10]  Wang, C.; Chen, S.H.; Yang, X.G.; Li, L. Investigation of chloride-induced pitting processes of iron in the H2SO4 solution by the digital holography. Electrochem. Commun. 2004, 6, 1009–1015.
[11]  Li, L.; Wang, C.; Chen, S.H.; Yang, X.G.; Yuan, B.Y.; Jia, H.L. An investigation on general corrosion and pitting of iron with the in-line digital holography. Electrochim. Acta 2008, 53, 3109–3119.
[12]  Emad, A.A.; Meguid, E. Progress in Corrosion Research. Localized Corrosion of Stainless Steel; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2007. Chapter 8; pp. 261–299.
[13]  Landolt, D. Corrosion and Surface Chemistry of Metals; EPFL Press: Lausanne, Switzerland, 2007; pp. 192–206.
[14]  Fernandes, J.C.S.; Ferreira, M.G.S. Effect of carbonate and lithium ions on the corrosion performance of pure aluminium. Electrochim. Acta 1992, 37, 2659–2661.
[15]  Kearns, J.R.; Scully, J.R.; Roberge, P.R.; Reichert, D.L.; Dawson, J.L. Electrochemical Noise Measurement for Corrosion Applications. ASTM STP 1277; American Society for Testing and Materials: West Conshohocken, PA, USA, 1996.
[16]  Tan, Y.J. Sensing localised corrosion by means of electrochemical noise detection and analysis. Sens. Actuators B Chem. 2009, 139, 688–698.
[17]  Kolics, A.; Besing, A.S.; Baradlai, P.; Haasch, R.; Wieckowski, A. Effect of pH on thickness and ion content of the oxide film on Aluminum in NaCl media. J. Electrochem. Soc. 2001, 148, B251–B259.
[18]  Natishan, P.M.; O'Grady, W.E.; Martin, F.J.; Rayne, R.J.; Kahn, H.; Heuer, A.H. Chloride interactions with the passive films on stainless steel. J. Electrochem. Soc. 2011, 158, C7–C10.
[19]  Abreu, C.M.; Cristobal, M.J.; Figueroa, R.; Pena, G. Influence of molybdenum ion implantation on the localized corrosion resistance of a high strength aluminium alloy. Corros. Sci. 2012, 54, 143–152.
[20]  Tang, X.; Cheng, Y.F. Quantitative characterization by micro-electrochemical measurements of the synergism of hydrogen, stress and dissolution on near-neutral pH stress corrosion cracking of pipelines. Corros. Sci. 2011, 53, 2927–2933.
[21]  Jin, T.Y.; Cheng, Y.F. In situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel. Corros. Sci. 2011, 53, 850–853.
[22]  Liao, J.S.; Kishimoto, K.; Yao, M.; Mori, Y.; Ikai, M. Effect of ozone on corrosion behavior of mild steel in seawater. Corros. Sci. 2012, 55, 205–212.
[23]  Davoodi, A.; Pan, J.; Leygraf, C.; Norgren, S. Probing of local dissolution of Al-alloys in chloride solutions by AFM and SECM. Appl. Surf. Sci. 2006, 252, 5499–5503.
[24]  Davoodi, A.; Pan, J.; Leygraf, C.; Norgren, S. Integrated AFM and SECM for in situ studies of localized corrosion of Al alloys. Electrochim. Acta 2007, 52, 7697–7705.
[25]  Yin, Y.; Niu, L.; Lu, M.; Guo, W.K.; Chen, S.H. In situ characterization of localized corrosion of stainless steel by scanning electrochemical microscope. Appl. Surf. Sci. 2009, 255, 9193–9199.
[26]  Liu, Z.Y.; Li, X.G.; Cheng, Y.F. In-situ characterization of the electrochemistry of grain and grain boundary of an X70 steel in a near-neutral pH solution. Electrochem. Commun. 2010, 12, 936–938.
[27]  Bastos, A.C.; Taryba, M.G.; Karavai, O.V.; Zheludkevich, M.L.; Lamaka, S.V.; Ferreira, M.G.S. Micropotentimetric mapping of local distributions of Zn2+ relevant to corrosion studies. Electrochem. Commun. 2010, 12, 394–397.
[28]  Kallip, S.; Bastos, A.C.; Zheludkevich, M.L.; Ferreira, M.G.S. A multi-electrode cell for high-throughput SVET screening of corrosion inhibitors. Corros. Sci. 2010, 52, 3146–3149.
[29]  Marquet, P.; Rappaz, B.; Magistretti, P.J.; Cuche, E.; Emery, Y.; Colomb, T.; Depeursinge, C. Digital holographic microscopy: A noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 2005, 30, 468–470.
[30]  Lazar, J.; Cip, O.; Cizek, M.; Hrabina, J.; Buchta, Z. Suppression of air refractive index variations in high-resolution interferometry. Sensors 2011, 11, 7644–7655.
[31]  Anand, A.; Chhaniwal, V.K.; Narayanamurthy, C.S. Diffusivity studies of transparent liquid solutions by use of digital holographic interferometry. Appl. Opt. 2006, 45, 904–909.
[32]  Habib, K.; Al-Muhana, K.; Habib, A. Holographic interferometry as electrochemical emission spectroscopy of carbon steel in seatater with low concentration of RA-41 corrosion inhibitor. Opt. Laser Technol. 2008, 46, 149–156.
[33]  Wang, M.F.; Li, X.G.; Du, N.; Huang, Y.Z.; Korsunsky, A. Derect evidence of initial pitting corrosion. Electrochem. Commun. 2008, 10, 1000–1004.
[34]  Tada, E.; Kaneko, H. Optical visualiztion of concentration field of Zn2+ during galvanic corrosion of a Zn/steel couple. Corros. Sci. 2010, 52, 3421–3427.
[35]  Li, L.; Wang, C.; Yuan, B.Y.; Chen, S.H. Numerical reconstrution of digital holograms for the study of pitting dynamic processes of the X70 carbon steel in NaCl solution. Electrochem. Commun. 2008, 10, 103–107.
[36]  Yuan, B.Y.; Chen, S.H.; Yang, X.G.; Wang, C.; Li, L. Mapping the transient concentration field within the diffusion layer by use of the digital holographic reconstruction. Electrochem. Commun. 2008, 10, 392–396.
[37]  Jia, H.L.; Chen, S.H.; Yuan, B.Y.; Wang, C.; Li, L. Mapping the contration changes during the dynamic processes of crevice corrosion by digital holographic reconstruction. J. Serb. Chem. Soc. 2009, 74, 197–202.
[38]  Yuan, B.Y.; Wang, C.; Li, L.; Chen, S.H. Real time observation of the anodic dissolution of copper in NaCl solution with the digital holography. Electrochem. Commun. 2009, 11, 1373–1376.
[39]  Wang, L.; Chen, S.H.; Yuan, B.Y.; Meng, F.J.; Wang, J.Q.; Wang, C.; Li, L. Digital holographic reconstruction detection of localized corrosion arising from scratches. J. Serb. Chem. Soc 2010, 75, 505–512.
[40]  Yuan, B.Y.; Wang, C.; Li, L.; Chen, S.H. Investigation of the effects of the magnetic field on the anodic dissolution of copper in NaCl solution with holography. Corros. Sci 2012, 58, 69–78.
[41]  Born, M.; Wolf, E. Principles of Optics, 7th (expanded) ed. ed.; The United Kingdom at the University Press: Cambridge, UK, 1999; p. 286.
[42]  Muller, R.H. Advances in Electrochemistry and Electrochemical Engineering. Double Beam Interferometry for Electrochemical Studies; John Wiley & Sons, Inc: Hoboken, NJ, USA, 1973; Volume 9, p. 282.
[43]  Quan, C.; Shang, H.M.; Bryanston-Cross, P.J. Application of the holographic carrier fringe and FFT technique for deformation measurement. Opt. Laser Technol. 1996, 28, 7–13.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133