全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Sensitivity Enhancement of Strain Sensing Utilizing a Differential Pair of Fiber Bragg Gratings

DOI: 10.3390/s120403891

Keywords: fiber Bragg grating, strain measurement, differential pair of FBG, sensitivity, railway safety monitoring

Full-Text   Cite this paper   Add to My Lib

Abstract:

In strain measurement applications, the matched fiber Bragg gratings (FBG) method is generally used to reduce temperature dependence effects. The FBG parameters have to be designed to meet the requirements by the particular application. The bandwidth and slope of the FBG has to be balanced well, according to the measurement range, accuracy and sensitivity. A sensitivity enhanced strain demodulation method without sacrificing the measurement range for FBG sensing systems is proposed and demonstrated utilizing a pair of reference FBGs. One of the reference FBGs and the sensing FBG have almost the same Bragg wavelength, while the other reference FBGs has a Bragg wavelength offset relative to the sensing FBG. Reflected optical signals from the sensing FBG pass through two reference FBGs, and subtract from each other after the detection. Doubled strain measurement sensitivity is obtained by static rail load experiments compared to the general matched grating approach, and further verified in dynamic load experiments. Experimental results indicate that such a method could be used for real-time rail strain monitoring applications.

References

[1]  Yan, L.; Zhang, Z.; Wang, P.; Pan, W.; Guo, L.; Luo, B.; Wen, K.; Wang, S.; Zhao, G. Fiber sensors for strain measurements and axle-counting in high-speed railway applications. IEEE Sens. J 2011, 11, 1587–1594, doi:10.1109/JSEN.2010.2086058.
[2]  Hill, K.O.; Meltz, G. Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol. 1997, 15, 1263–1276, doi:10.1109/50.618320.
[3]  Ma, C.C.; Wang, C.W. Transient strain measurements of a suspended cable under impact loadings using fiber Bragg grating sensors. IEEE Sens. J 2009, 9, 1998–2007, doi:10.1109/JSEN.2009.2031327.
[4]  Gomez, J.; Zubia, J.; Aranguren, G.; Arrue, J.; Poisel, H.; Saez, I. Comparing polymer optical fiber, fiber Bragg grating, and traditional strain gauge for aircraft structural health monitoring. App. Opt. 2009, 48, 1436–1443, doi:10.1364/AO.48.001436.
[5]  Han, Y.G.; D, X; Lee, J.H.; Lee, S.B. Simultaneous measurement of bending and temperature based on a single sampled chirped fiber Bragg grating embedded on a flexible cantilever beam. Opt. Lett. 2006, 31, 2839–2841, doi:10.1364/OL.31.002839. 16969395
[6]  Tran, T.; Han, Y.G.; Lee, Y.J.; Kim, S.H.; Lee, S.B. Performance enhancement of long-distance simultaneous measurement of strain and temperature based on a fiber Raman Laser with an etched FBG. IEEE Photon. Technol. Lett. 2005, 17, 1920–1922, doi:10.1109/LPT.2005.853519.
[7]  Yan, L.S.; Yi, A.; Pan, W.; Luo, B. A simple demodulation method for FBG temperature sensors using a narrow band wavelength tunable DFB laser. IEEE Photon. Technol. Lett. 2010, 22, 1391–1393, doi:10.1109/LPT.2010.2060478.
[8]  Wei, C.L.; Lai, C.C.; Liu, S.Y.; Chung, W.H.; To, T.K.; Tam, H.Y.; Ho, S.L.; McCusker, A.; Kam, J.; Lee, K.Y. A fiber Bragg grating sensor system for train axle counting. IEEE Sens. J 2010, 10, 1905–1912, doi:10.1109/JSEN.2010.2049199.
[9]  Nakazaki, Y.; Yamashita, S. Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing. Opt. Express 2009, 17, 8310–8318, doi:10.1364/OE.17.008310. 19434164
[10]  Grattan, S.K.T.; Taylor, S.E.; Sun, T.; Basheer, P.A.M.; Grattan, K.T.V. In situ cross-calibration of in-fiber Bragg grating and electrical resistance strain gauges for structural monitoring using an extensometer. IEEE Sens. J 2009, 9, 1355–1360, doi:10.1109/JSEN.2009.2026990.
[11]  Ferreira, A.; Silveira, T.; Fonseca, D.; Riberiro, R.; Monteiro, P. Highly linear integrated optical transmitter for subcarrier multiplexed systems. IEEE Photon. Technol. Lett. 2009, 21, 438–440, doi:10.1109/LPT.2009.2012506.
[12]  Chuang, K.C.; Ma, C.C. Pointwise fiber Bragg grating displacement sensor system for dynamic measurements. App. Opt. 2008, 47, 3561–3567, doi:10.1364/AO.47.003561.
[13]  Chan, T.H.T.; Yu, L.; Tam, H.Y.; Ni, Y.Q.; Liu, S.Y.; Chung, W.H.; Cheng, L.K. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation. Eng. Struct. 2006, 28, 648–659, doi:10.1016/j.engstruct.2005.09.018.
[14]  Davis, M.A.; Kersey, A.D. Matched-filter interrogation technique for fibre Bragg grating arrays. Electron. Lett. 1995, 31, 822–823, doi:10.1049/el:19950547.
[15]  Lobo, R.A.B.; Ferreira, L.A.; Santos, J.L.; Jackson, D.A. Analysis of the reflection-matched fiber Bragg grating sensing interrogation scheme. App. Opt. 1997, 36, 934–939, doi:10.1364/AO.36.000934.
[16]  Davis, M.A.; Kersey, A.D. All-fibre Bragg grating strain-sensor demodulation technique using a wavelength division coupler. IEEE Elect. Lett. 1994, 30, 75–77.
[17]  Jiang, B.; Zhao, J.; Qin, C.; Huang, Z.; Fan, F. An optimized strain demodulation method based on dynamic double matched fiber Bragg grating filtering. Opt. Laser Eng. 2011, 49, 415–418, doi:10.1016/j.optlaseng.2010.11.011.
[18]  Erdogan, T. Fiber grating spectra. J. Lightwave Technol. 1997, 15, 1277–1294, doi:10.1109/50.618322.
[19]  Kersey, A.D.; Davis, M.A.; Patrick, H.J.; LeBlanc, M.; Koo, K.P.; Askins, C.G.; Putnam, M.A.; Friebele, E.J. Fiber grating sensors. J. Lightwave Technol. 1997, 15, 1442–1463, doi:10.1109/50.618377.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133