全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Using Micromechanical Resonators to Measure Rheological Properties and Alcohol Content of Model Solutions and Commercial Beverages

DOI: 10.3390/s120506497

Keywords: micromechancical sensors, cantilevers, rheological properties, alcohol contents, quality control

Full-Text   Cite this paper   Add to My Lib

Abstract:

Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks.

References

[1]  Lindholm, U.S.; Kana, D.D.; Chu, W.-H. Abramson, H.N. Elastic vibration characteristics of cantilever plates in water. J. Ship. Res. 1965, 9, 11–22.
[2]  Binnig, G.; Quate, C.F.; Gerber, C. Atomic force microscopy. Phys. Rev. Lett. 1986, 56, 930–933, doi:10.1103/PhysRevLett.56.930. 10033323
[3]  Bergaud, C.; Nicu, L. Viscosity measurements based on experimental investigations of composite cantilever beam eigenfrequencies in viscous media. Rev. Sci. Instrum. 2000, 71, 2487–2491, doi:10.1063/1.1150640.
[4]  Hennemeyer, M.; Burghardt, S.; Stark, R.W. Cantilever Micro-rheometer for the characterization of sugar solutions. Sensors 2008, 8, 10–22, doi:10.3390/s8010010.
[5]  Ahmed, N.; Nino, D.F.; Moy, V.T. Measurement of solution viscosity by atomic force microscopy. Rev. Sci. Instrum. 2001, 72, 2731–2734, doi:10.1063/1.1368856.
[6]  Oden, P.I.; Chen, G.Y.; Steele, R.A.; Warmack, R.J.; Thundat, T. Viscous drag measurements utilizing microfabricated cantilevers. Appl. Phys. Lett. 1996, 68, 3814–3816, doi:10.1063/1.116626.
[7]  Chon, J.W.; Mulvaney, M.P.; Sader, J.E. Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids. J. Appl. Phys. 2000, 87, 3978–3988, doi:10.1063/1.372455.
[8]  Boskovic, S.; Chon, J.W.M.; Mulvaney, P.; Sader, J.E. Rheological measurements using microcantilevers. J. Rheol. 2002, 46, 891–899, doi:10.1122/1.1475978.
[9]  Oden, P.I.; Chen, Y.; Cteele, R.A.; Warmack, R.J.; Thundat, T. Viscous drag measurements utilizing microfabricated cantilevers. Appl. Phys. Lett. 1996, 68, 3814–3816, doi:10.1063/1.116626.
[10]  Dufour, I.; Maali, A.; Amarouchene, Y.; Ayela, C.; Caillard, B.; Darwiche, A.; Guirardel, M.; Kellay, H.; Lemaire, E.; Mathieu, F.; Pellet, C.; Saya, D.; Youssry, M.; Nicu, L.; Colin, A. The Microcantilever: A versatile tool for measuring the rheological properties of complex fluids. J. Sensors 2011, 2012, 719898.
[11]  Riesch, C.; Reichel, E.K.; Keplinger, F.; Jakoby, B. Characterizing vibrating cantilevers for liquid viscosity and density sensing. J. Sensors 2008, 2008, 697062.
[12]  Steffe, J.F. Rheological Methods in Food Process Engineering, 2nd ed. ed.; Freemen Press: East Lansing, MI, USA, 1996; p. 122.
[13]  Van den Berg, F.W.J.; van Osenbruggen, W.A.; Smilde, A.K. Process analytical chemistry in the distillation industry using near-infrared spectroscopy. Proc. Contr. Qual. 1997, 9, 51–57.
[14]  Mattos, I.L.; Sartini, R.P.; Zagatto, E.A.G.; Reis, B.F.; Gine, M.F. Spectrophotometric flow injection determination of ethanol in distilled spirits and wines involving permeation through a silicon tubular membrane. Anal. Sci. 1998, 14, 1005–1008, doi:10.2116/analsci.14.1005.
[15]  Belmiloud, N.; Dufour, I.; Colin, A.; Nicu, L. Rheological behavior probed by vibrating microcantilevers. Appl. Phys. Lett. 2008, 92, 041907, doi:10.1063/1.2837181.
[16]  Etchart, I.; Chen, H.; Dryden, P.; Jundt, J.; Harrison, C.; Hsu, K.; Marty, F.; Mercier, B. MEMS sensors for density-viscosity sensing in a low-flow microfluidic environment. Sens. Actuat. A 2008, 141, 266–275, doi:10.1016/j.sna.2007.08.007.
[17]  Goodwin, A.R.H.; Fitt, A.D.; Ronaldson, K.A.; Wakeham, W.A. A vibrating plate fabricated by the methods of microelectromechanical yystems (MEMS) for the simultaneous measurement of density and viscosity: Results for Argon at temperatures between 323 and 423 K at pressures up to 68MPa1. Int. J. Thermophys. 2006, 27, 1650–1676, doi:10.1007/s10765-006-0114-6.
[18]  Youssry, M.; Belmiloud, N.; Caillard, B.; Ayela, C.; Pellet, C.; Dufour, I. A straightforward determination of fluid viscosity and density using microcantilevers: Analytical and experimental studies. Proc. Eng. 2010, 5, 1035–1038, doi:10.1016/j.proeng.2010.09.286.
[19]  Sader, J.E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 1998, 84, 64–76, doi:10.1063/1.368002.
[20]  Wang, M.L.; Choong, Y.M.; Su, N.W.; Lee, M.H. A Rapid Method for Determination of Ethanol in Alcoholic Beverages Using Capillary Gas Chromatography. J. Food Drug Anal. 2003, 11, 133–140.
[21]  Cullen, P.J.; Duffy, A.P.; O'Donnell, C.P.; O'Callaghan, D.J. Process viscometry for the food industry. Trends Food Sci. Tech. 2000, 11, 451–457, doi:10.1016/S0924-2244(01)00034-6.
[22]  Van Eysden, C.A.; Sader, J.E. Frequency response of cantilever beams immersed in compressible fluids with applications to the atomic force microscope. J. Appl.Phys. 2009, 106, 094904, doi:10.1063/1.3254191.
[23]  Sader, J.E.; Chon, J.W.M.; Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 1999, 70, 3967–3969, doi:10.1063/1.1150021.
[24]  Haynes, W.M. CRC Handbook of Chemistry & Physics, 91st ed. ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 8–63.
[25]  Ghatkesar, M.K.; Barwich, V.; Braun, T.; Ramseyer, J.-P.; Gerber, C.; Hegner, M.; Lang, H.P.; Drechsler, U.; Despont, M. Higher modes of vibration increase mass sensitivity in nanomechanical microcantilevers. Nanotechnology 2007, 18, 445502 1–8.
[26]  Soper, A.K.; Dougan, L.; Crain, J.; Finney, J. Excess entropy in alcohol-water solutions:? A simple clustering explanation. J. Phys. Chem. B. 2006, 110, 3472–3476, doi:10.1021/jp054556q. 16494400
[27]  Pradhan, T.; Ghoshal, P.; Biswas, R. Structural transition in alcohol–water binary mixtures: A spectroscopic study. J. Chem. Sci. 2008, 120, 275–287, doi:10.1007/s12039-008-0033-0.
[28]  Mattick, L.R.; Rice, A.C. Quantitative determination of lactic acid and glycerol in wines by gas chromatography. Am. J. Enol. Vitic. 1970, 21, 205–212.
[29]  Oliveira, H.M.; Segundo, M.A.; Lima, J.; Grassi, V.; Zagatto, E. Kinetic enzymatic determination of glycerol in wine and beer using a sequential injection system with spectrophotometric detection. J. Agric. Food Chem. 2006, 54, 4136–4140, doi:10.1021/jf060229j. 16756338

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133