全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Evaluation of the Impact of Furniture on Communications Performance for Ubiquitous Deployment of Wireless Sensor Networks in Smart Homes

DOI: 10.3390/s120506463

Keywords: Internet of Things, Wireless Sensor Networks, smart spaces, sensing furniture, ambient intelligence

Full-Text   Cite this paper   Add to My Lib

Abstract:

The extensions of the environment with the integration of sensing systems in any space, in conjunction with ubiquitous computing are enabling the so-called Smart Space Sensor Networks. This new generation of networks are offering full connectivity with any object, through the Internet of Things (IoT) and/or the Web, i.e., the Web of Things. These connectivity capabilities are making it feasible to sense the behaviours of people at home and act accordingly. These sensing systems must be integrated within typical elements found at home such as furniture. For that reason, this work considers furniture as an interesting element for the transparent location of sensors. Furniture is a ubiquitous object, i.e., it can be found everywhere at home or the office, and it can integrate and hide the sensors of a network. This work addresses the lack of an exhaustive study of the effect of furniture on signal losses. In addition an easy-to-use tool for estimating the robustness of the communication channel among the sensor nodes and gateways is proposed. Specifically, the losses in a sensor network signal due to the materials found within the communication link are evaluated. Then, this work proposes a software tool that gathers the obtained results and is capable of evaluating the impact of a given set of materials on the communications. This tool also provides a mechanism to optimize the sensor network deployments during the definition of smart spaces. Specifically, it provides information such as: maximum distances between sensor nodes, most suitable type of furniture to integrate sensors, or battery life of sensor nodes. This tool has been validated empirically in the lab, and it is currently being used by several enterprise partners of the Technological Centre of Furniture and Wood in the southeast of Spain.

References

[1]  Lloret, J.; Garcia, M.; Bri, D.; Sendra, S. A wireless sensor network deployment for rural and forest fire detection and verification. Sensors 2009, 9, 8722–8747, doi:10.3390/s91108722. 22291533
[2]  Riem-Vis, R. Cold chain management using an ultra low power wireless sensor network. Proceedings of Workshop on Applications of Mobile Embedded Systems, Boston, MA, USA, 6 June 2004.
[3]  Santa, J.; Zamora-Izquierdo, M.A.; Jara, A.J.; Skarmeta, A.F.G. Telematic platform for integral management of agricultural/perishable goods in terrestrial logistics. Comput. Electr. Agr. 2012, 80, 31–40, doi:10.1016/j.compag.2011.10.010.
[4]  Villacorta, J.J.; Jiménez, M.I.; Val, L.; Izquierdo, A. A configurable sensor network applied to ambient assisted living. Sensors 2011, 11, 10724–10737, doi:10.3390/s111110724. 22346668
[5]  Zamora, M.A.; Santa, J.; Skarmeta, A.F.G. Integral and networked home automation solution towards indoor ambient intelligence. IEEE Pervas. Comput. 2010, 9, 66–77, doi:10.1109/MPRV.2010.20.
[6]  Aarts, E.; Wichert, R. Technology guide. In Ambient Intelligence; Springer: Berlin, Heidelberg, Germany, 2009.
[7]  Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805, doi:10.1016/j.comnet.2010.05.010.
[8]  Goldsmith, A. Wireless Communications; Cambridge University Press: New York, NY, USA, 2005.
[9]  Okumura, T.; Ohmori, E.; Fukuda, K. Field strength and its variability in VHF and UHF land mobile service. Rev. Electr. Commun. Lab. 1968, 16, 825–873.
[10]  Hata, M. Empirical formula for propagation loss in land mobile radio services. IEEE Trans. Vehic. Technol. 1980, 29, 317–325, doi:10.1109/T-VT.1980.23859.
[11]  Erceg, V.; Greenstein, L.J.; Tjandra, S.Y.; Parkoff, S.R.; Gupta, A.; Kulic, B.; Julius, A.A.; Bianchi, R. An empirically based path loss model for wireless channels in suburban environments. IEEE J. Sel. Area. Commun. 1999, 17, 1205–1211, doi:10.1109/49.778178.
[12]  Seidel, S.Y.; Rappaport, T.S. 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings. IEEE Trans. Anten. Propag. 1992, 40, 207–217, doi:10.1109/8.127405.
[13]  Rappaport, T.S. Wireless Communications; Prentice Hall: Upper Saddle River NJ, USA, 2001.
[14]  Anderson, C.R.; Rapaport, T.S.; Bae, K.; Verstak, A.; Ramakrishnan, N.; Tranter, W.H.; Shaffer, C.A.; Watson, L.T. In-building wideband multipath characteristics at 2.5 and 60 Ghz. Proceedings of IEEE 56th Vehicular Technology Conference, Vancouver, Canada, 24–28 September 2002; pp. 97–101.
[15]  Poon, L.-S.; Wang, H.-S. Propagation characteristic measurement and frequency reuse planning in an office building. Proceedings of IEEE 44th Vehicular Technology Conference, Stockholm, Sweden, 8–10 June 1994; pp. 1807–1810.
[16]  Durgin, G.; Rappaport, T.S.; Xu, H. Partition-based path loss analysis for in-home and residential areas at 5.85 Ghz. Proceedings of IEEE Global Telecommunications Conference, Sydney, Australia, 8–12 November 1998; pp. 904–909.
[17]  Casari, P.; Castellani, A.P.; Cenedese, A.; Lora, C.; Rossi, M.; Schenato, L.; Zorzi, M. Wireless sensor networks for city-wide ambient intelligence (WISE-WAI). Sensors 2009, 9, 4056–4092, doi:10.3390/s90604056. 22408513
[18]  Edwards, W.K.; Foreword By-Joy, B.; Foreword By-Murphy, B. Core Jini; Prentice Hall: Upper Saddle River, NJ, USA, 1999.
[19]  Song, H.; Kim, D.; Lee, K.; Sung, J. UPnP-based sensor network management architecture. Proceedings of International Conference on Mobile Computing and Ubiquitous Networking, Osaka, Japan, 13–15 April 2005.
[20]  Lee, C.; Nordstedt, D.; Helal, S. Enabling smart spaces with OSGi. Pervas. Comput. IEEE 2003, 2, 89–94.
[21]  X10. Available online: http://en.wikipedia.org/wiki/X10_%28industry_standard%29 (accessed on 1 February 2012).
[22]  Miskowicz, M.; Golanski, R. LON technology in wireless sensor networking applications. Sensors 2006, 6, 30–48, doi:10.3390/s6010030.
[23]  LonWorks. Available online: http://en.wikipedia.org/wiki/LonWorks (accessed on 1 February 2012).
[24]  Ivanov, B.; Zhelondz, O.; Borodulkin, L.; Ruser, H. Distributed smart sensor system for indoor climate monitoring. Proceedings of KONNEX Scientific Conference, München, Germany, 10–11 October 2002.
[25]  KNX. Available online: http://en.wikipedia.org/wiki/KNX_%28standard%29 , (accessed on 1 February 2012).
[26]  Baronti, P.; Pillai, P.; Chook, V.W.C.; Chessa, S.; Gotta, A.; Hu, Y.F. Wireless sensor networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards. Comput. Commun. 2007, 30, 1655–1695, doi:10.1016/j.comcom.2006.12.020.
[27]  Poole, I. What exactly is ZigBee? Communications 2004, 2, 44–45.
[28]  Polastre, J.; Szewczyk, R.; Mainwaring, A.; Culler, D.; Anderson, J. Analysis of wireless sensor networks for habitat monitoring. In Wireless Sensor Networks; Kluwer Academic Publishers: Norwell, MA, USA, 2004; pp. 399–423.
[29]  Hill, J.L.; Culler, D.E. Mica: A wireless platform for deeply embedded Networks. IEEE Micro 2002, 22, 12–24.
[30]  O'Flynn, B.; Angove, P.; Barton, J.; Gonzalez, A.; O'Donoghue, J.; Herbert, J. Wireless biomonitor for ambient assisted living. Presentation at Conference on Signals & Electronic Systems (ICSES), Lodz, Poland, 17–20 September 2006.
[31]  Polastre, J.; Szewczyk, R.; Culler, D. Telos: enabling ultra-low power wireless research. Proceedings of International Symposium on Information Processing in Sensor Networks (IPSN), Los Angeles, CA, USA, 25–27 April 2005; pp. 364–369.
[32]  Jara, A.J.; Zamora, M.A.; Skarmeta, A.F.G. An internet of things-based personal device for diabetes therapy management in ambient assisted living (AAL). Pers. Ubiquit. Comput. 2011, 15, 431–440, doi:10.1007/s00779-010-0353-1.
[33]  Levis, P.; Madden, S.; Polastre, J.; Szewczyk, R.; Whitehouse, K.; Woo, A.; Gay, D.; Hill, J.; Welsh, M.; Brewer, E. Tinyos: An operating system for sensor networks. Ambient Intell. 2005, doi:10.1007/3-540-27139-2_7.
[34]  Dunkels, A.; Gronvall, B.; Voigt, T. Contiki-a lightweight and flexible operating system for tiny networked sensors. Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks, Tampa, FL, USA, 16–18 November 2004; pp. 455–462.
[35]  Cao, Q.; Abdelzaher, T.; Stankovic, J.; He, T. The LiteOS operating system: Towards unix-like abstractions for wireless sensor networks. Proceedings of the 7th International Conference on Information Processing in Sensor Networks, St. Louis, MO, USA, 22–24 April 2008; pp. 233–244.
[36]  Korkalainen, M.; Sallinen, M.; Karkkainen, N.; Tukeva, P. Survey of wireless sensor networks simulation tools for demanding applications. Proceedings of the 2009 Fifth International Conference on Networking and Services, Valencia, Spain, 20–25 April 2009; pp. 102–106.
[37]  Levis, P.; Lee, N.; Welsh, M.; Culler, D. TOSSIM: Accurate and scalable simulation of entire TinyOS applications. Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, Los Angeles, CA, USA, 5–7 November 2003; pp. 126–137.
[38]  NesCT: A Language Translator. Available online: http://nesct.sourceforge.net/ (accessed on 9 February 2012).
[39]  EDX Signal Pro. Available online: http://www.edx.com/products/signalpro.html (accessed on February 2012).
[40]  Winprop. Available online: http://www.awe-communications.com/ (accessed on 9 February 2012).
[41]  Torres, RP; Valle, L.; Domingo, M.; Diez, MC. CINDOOR: An engineering tool for planning and design of wireless systems in enclosed spaces. IEEE Anten. Propag. Mag. 1999, 41, 11–22, doi:10.1109/74.789733.
[42]  McGibney, A.; Guinard, A.; Pesch, D. Wi-Design: A modelling and optimization tool for wireless embedded systems in buildings. Proceedings of 2011 IEEE 36th Conference on Local Computer Networks, Bonn, Germany, 4–7 October 2011; pp. 640–648.
[43]  Aura project. Available online: http://www.cs.cmu.edu/~aura/ (accessed on 16 December 2011).
[44]  Oxygen project. Available online: http://oxygen.csail.mit.edu/ (accessed on 16 December 2011).
[45]  Disappearing Computer Project. Available online: http://www.disappearing-computer.net/ (accessed on 16 December 2011).
[46]  CoolTown Project. Available online: http://www.hpl.hp.com/techreports/2001/HPL-2001-22.html (accessed on 16 December 2011).
[47]  Smart Textile. Available online: http://www.sensingtex.com/index.php/en/ (accessed on 16 December 2011).
[48]  Smart Textile. Available online: http://www.sefar.com/htm/609/es/SEFAR-PowerSens.htm?Folder=1484721 (accessed on 16 December 2011).
[49]  Analysis of used materials in furniture manufacturing. Available online: http://www.observatorioindustrialdelamadera.com/informes2010/analisis2009.pdf (accessed on 2 February 2012).
[50]  Van Vleck, J.H. The absorption of microwaves by uncondensed water vapour. Phys. Rev. 1947, 71, 425–433, doi:10.1103/PhysRev.71.425.
[51]  Rosenkranz, P.W. Water vapor microwave continuum absorption: A comparison of measurements and models. Radio Sci. 1998, 33, 919–928, doi:10.1029/98RS01182.
[52]  Gasch, S.; Martín, P.; Galdón, J.L. Strength of Materials; Polytechnic University of Valencia: Valencia, Spain, 2000.
[53]  Moso? Tablero Macizo. Available online: http://www.moso-bambu.es/files/SP_MOSO%20Tablero%20Macizo.pdf (accessed on 9 February 2012).
[54]  Pine blockboard. Available online: http://www.tablev.es/insignis.aspx?cat=1 (accessed on 9 February 2012).
[55]  Construnario. Available online: http://www.construnario.com/ebooks/230/Fichas%20Comerciales%20de%20Productos/Espa%C3%B1ol/Finsa/Fimapan%20Forma/files/Fimapan%20Forma.pdf (accessed on 9 February 2012).
[56]  Overviews on PMMA. Available online: http://www.lgmma.com/english/tech_info/pdf/LG%20 (accessed on 9 February 2012).
[57]  Jennic Application Note: JN-AN-1006. Available online: http://www.jennic.com/files/support_documentation/JN-AN-1006-PER-Test-Software.pdf (accessed on 15 May 2012).
[58]  Jara, A.J.; Zamora, M.A.; Skarmeta, A.F. GLoWBAL IPv6: An adaptive and transparent IPv6 integration in the Internet of Things. In Mobile Information; IOS Press: Lansdale, PA, USA, 2012.
[59]  Bleda, A.L.; Maestre, R.; Jara, A.J.; Santa, G.; Skarmeta, A.G. Web of Things as a product improvement tool: Furniture as case study. Proceedings of the Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS-2012), Palermo, Italy, 4–6 July 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133