全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Advancements in Transmitters and Sensors for Biological Tissue Imaging in Magnetic Induction Tomography

DOI: 10.3390/s120607126

Keywords: tomography, biological tissue, magnetic induction tomography, transmitter, sensor

Full-Text   Cite this paper   Add to My Lib

Abstract:

Magnetic Induction Tomography (MIT), which is also known as Electromagnetic Tomography (EMT) or Mutual Inductance Tomography, is among the imaging modalities of interest to many researchers around the world. This noninvasive modality applies an electromagnetic field and is sensitive to all three passive electromagnetic properties of a material that are conductivity, permittivity and permeability. MIT is categorized under the passive imaging family with an electrodeless technique through the use of excitation coils to induce an electromagnetic field in the material, which is then measured at the receiving side by sensors. The aim of this review is to discuss the challenges of the MIT technique and summarize the recent advancements in the transmitters and sensors, with a focus on applications in biological tissue imaging. It is hoped that this review will provide some valuable information on the MIT for those who have interest in this modality. The need of this knowledge may speed up the process of adopted of MIT as a medical imaging technology.

References

[1]  Griffiths, H. Magnetic induction tomography. Meas. Sci. Technol. 2001, 12, 1126–1131.
[2]  Liu, Z.; He, M.; Xiong, H. Simulation study of the sensing field in electromagnetic tomography for two-phase flow measurement. Flow Meas. Instrum. 2005, 16, 199–204.
[3]  Binns, R.; Lyons, A.R.A.; Peyton, A.J.; Pritchard, W.D.N. Imaging molten steel flow process. Meas. Sci. Technol. 2001, 12, 1132–1138.
[4]  Soleimani, M.; Adler, A.; Dai, T.; Peyton, A.J. Application of a single step temporal imaging of magnetic induction tomography for metal flow visualization. Insight-Non-Destr. Test. Cond. Monit. 2008, 50, 25–29.
[5]  Ma, X.; Peyton, A.J.; Binns, R.; Higson, S.R. Electromagnetic techniques for imaging the cross-section distribution of molten steel flow in the continuous casting nozzle. IEEE Sens. J. 2005, 5, 224–232.
[6]  Terzija, N.; Yin, W.; Gerbeth, G.; Stefani, F.; Timmel, K.; Wondrak, T.; Peyton, A.J. Use of electromagnetic induction tomography for monitoring liquid metal/gas flow regimes on a model of an industrial steel caster. Meas. Sci. Technol. 2011, 22, 1–8.
[7]  Rosell, F.J.; Merwa, R.; Brunner, P.; Scharfetter, H. A multifrequency magnetic induction tomography system using planar gradiometers: Data collection and calibration. Physiol. Meas. 2006, 27, 271–280.
[8]  Ma, L.; Wei, H.Y.; Soleimani, M. Pipelines inspection using magnetic induction tomography based on a narrowband pass filtering method. Prog. Electromagn. Res. 2012, 23, 65–78.
[9]  Bayford, R.H. Bioimpedance tomography (electrical impedance tomography). Ann. Rev. Biomed. Eng. 2006, 8, 63–91.
[10]  Zou, Y.; Guo, Z. A review of electrical impedance techniques for breast cancer detection. Med. Eng. Phys. 2003, 25, 79–90.
[11]  Kourunen, J.; Kayhko, R.; Matula, J.; Kayhko, J.; Vauhkonen, M.; Heikkinen, L. Imaging of mixing of two miscible liquids using electrical impedance tomography and linear impedance sensor. Flow Meas. Instrum. 2008, 19, 391–396.
[12]  Tortora, P.; Ceccio, S.; Ohern, T.; Trujillo, S.; Torczynski, J. Quantitative measurement of solids distribution in gas–solid riser flows using electrical impedance tomography and gamma densitometry tomography. Int. J. Multiphas. Flow 2006, 32, 972–995.
[13]  Zhang, S.; Xu, G.; Zhang, X.; Zhang, B.; Wang, H.; Xu, Y.; Yin, N.; Li, Y.; Yan, W. Computation of a 3-D model for lung imaging with electrical impedance tomography. IEEE Trans. Magn. 2012, 48, 651–654.
[14]  Wang, C.; Lv, Z.; Li, D. Experimental study on gas-solids flows in a circulating fluidised bed using electrical capacitance tomography. Powder Technol. 2008, 185, 144–151.
[15]  Liu, S.; Chen, Q.; Wang, H.; Jiang, F.; Ismail, I.; Yang, W. Electrical capacitance tomography for gas–solids flow measurement for circulating fluidized beds. Flow Meas. Instrum. 2005, 16, 135–144.
[16]  Soleimani, M.; Lionheart, W.R.B. Image reconstruction in three-dimensional magnetostatic permeability tomography. IEEE Trans. Magn. 2005, 41, 1274–1279.
[17]  Soleimani, M. Computational aspects of low frequency electrical and electromagnetic tomography: A review study. Int. J. Numer. Anal. Model. 2008, 5, 407–440.
[18]  Zhang, L.; Tian, P.; Jin, X.; Tong, W. Numerical simulation of forward problem for electrical capacitance tomography using element-free Galerkin method. Eng. Anal. Bound. Elem. 2010, 34, 477–482.
[19]  Tarjan, P.P.; McFee, R. Electrodeless measurements of the effective resistivity of the human torso and head by magnetic induction. IEEE Trans. Biomed. Eng. 1968, 15, 266–78.
[20]  Netz, J.; Forner, E.; Haggemann, S. Contactless impedance measurements by magnetic induction—A possible method for investigation of brain impedance. Physiol. Meas. 1993, 14, 463–471.
[21]  Al-Zeibak, S.; Saunders, N.H. A feasibility study of in vivo electromagnetic imaging. Phys. Med. Biol. 1993, 38, 151–160.
[22]  Seeton, R.; Adler, A. Sensitivity of a Single Coil Electromagnetic Sensor for Non-Contact Monitoring of Breathing. Proceedings of 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 21–24 August 2008; pp. 518–521.
[23]  Scharfetter, H. Feasibility of Lung Imaging Using Magnetic Induction Tomography. In IFMBE Proceedings; Springer: Berlin/Heidelberg, Germany, 2009; Volume 25/II, pp. 525–528.
[24]  Wang, C.; Dong, X.Z.; Liu, R.G.; Fu, F.; Shi, X.T.; You, F.S. Preliminary simulations on magnetic induction tomography of the brain based on finite element method. J. US-China Med. Sci. 2007, 4, 11–17.
[25]  Merwa, R.; Hollaus, K.; Scharfetter, H. Detection of brain oedema using magnetic induction tomography: A feasibility study of the likely sensitivity and detectability. Physiol. Meas. 2004, 25, 1–8.
[26]  Babushkin, A.K.; Bugaev, A.S.; Vartanov, A.V.; Korzhenevskii, A.V.; Sapetskii, S.A.; Tuikin, T.S.; Cherepenin, V.A. Developing methods and instruments of electromagnetic tomography for studying the human brain and cognitive functions. Bull. Russ. Acad. Sci. Phys. 2011, 75, 136–139.
[27]  Scharfetter, H.; Lackner, H.K.; Rosell, J. Magnetic induction tomography: Hardware for multi-frequency measurements in biological tissues. Physiol. Meas. 2001, 22, 131–146.
[28]  Chen, Y.; Yan, M.; Chen, D.; Hamsch, M.; Liu, H.; Jin, H.; Vauhkonen, M.; Igney, C.H.; Kahlert, J.; Wang, Y. Imaging hemorrhagic stroke with magnetic induction tomography: Realistic simulation and evaluation. Physiol. Meas. 2010, 31, 809–827.
[29]  Watson, S.; Wee, H.C.; Griffiths, H.; Williams, R.J. A highly phase-stable differential detector amplifier for magnetic induction tomography. Physiol. Meas. 2011, 32, 917–926.
[30]  Casa?as, R.; Scharfetter, H.; Altes, A.; Remacha, A.; Sarda, P.; Sierra, J.; Merwa, R.; Hollaus, K.; Rosell, J. Measurement of liver iron overload by magnetic induction using a planar gradiometer: Preliminary human results. Physiol. Meas. 2004, 25, 315–323.
[31]  Scharfetter, H.; Casanas, R.; Rosell, J. Biological tissue characterization by magnetic Induction Spectroscopy (MIS): Requirements and limitations. IEEE Trans. Biomed. Eng. 2003, 50, 870–880.
[32]  Gabriel, C.; Gabriel, S.; Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 1996, 41, 2231–2249.
[33]  Kuang, W.; Nelson, S.O. Low-frequency dielectric properties of biological tissues: A review with some new insights. Am. Soc. Agric. Eng. 1998, 41, 173–184.
[34]  Merwa, R.; Scharfetter, H. Magnetic induction tomography: Evaluation of the point spread function and analysis of resolution and image distortion. Physiol. Meas. 2007, 28, 313–324.
[35]  Merwa, R.; Scharfetter, H. Magnetic induction tomography: Comparison of the image quality using different types of receivers. Physiol. Meas. 2008, 29, 417–429.
[36]  Huang, C.N.; Yu, F.M.; Chung, H.Y. Rotational electrical impedance tomography. Meas. Sci. Technol. 2007, 18, 2958–2966.
[37]  Cao, Z.; Wang, H.; Yang, W.; Yan, Y. A calculable sensor for electrical impedance tomography. Sens. Actuat. A: Phys. 2007, 140, 156–161.
[38]  Granot, Y.; Ivorra, A.; Rubinsky, B. Frequency-division multiplexing for electrical impedance tomography in biomedical applications. Int. J. Biomed. Imag. 2007, 1, 1–9.
[39]  Griffiths, H.; Gough, W.; Watson, S.; Williams, R.J. Residual capacitive coupling and the measurement of permittivity in magnetic induction tomography. Physiol. Meas. 2007, 28, 301–311.
[40]  Rosell, J.; Casa?as, R.; Scharfetter, H. Sensitivity maps and system requirements for magnetic induction tomography using a planar gradiometer. Physiol. Meas. 2001, 22, 121–130.
[41]  Brunner, P.; Merwa, R.; Missner, A.; Rosell, J.; Hollaus, K.; Scharfetter, H. Reconstruction of the shape of conductivity spectra using differential multi-frequency magnetic induction tomography. Physiol. Meas. 2006, 27, 237–248.
[42]  Korjenevsky, A.; Cherepenin, V.; Sapetsky, S. Magnetic induction tomography: Experimental realization. Physiol. Meas. 2000, 21, 89–94.
[43]  Hollaus, K.; Magele, C.; Merwa, R.; Scharfetter, H. Numerical simulation of the eddy current problem in magnetic induction tomography for biomedical applications by edge elements. IEEE Trans. Magn. 2004, 40, 623–626.
[44]  Scharfetter, H. Single-shot dual frequency excitation for magnetic induction tomography (MIT) at frequencies above 1 MHz. J. Phys. Conf. Ser. 2010, 224, 012041.
[45]  Gürsoy, D.; Mamatjan, Y.; Adler, A.; Scharfetter, H. Enhancing impedance imaging through multimodal tomography. IEEE Trans. Biomed. Eng. 2011, 58, 3215–3224.
[46]  Griffiths, H. Magnetic Induction Tomography. In Electrical Impedance Tomography: Methods, History and Applications; Holder, D., Ed.; Institute of Physics Publishing: Bristol, UK, 2005; pp. 213–238.
[47]  Wei, H.Y.; Wilkinson, A.J. Design of a sensor coil and measurement electronics for magnetic induction tomography. IEEE Trans. Instrum. Meas. 2011, 60, 3853–3859.
[48]  Watson, S.; Williams, R.J.; Griffiths, H.; Gough, W.; Morris, A. A Transceiver for Direct Phase Measurement Magnetic Induction Tomography. Proceedings of the 23rd IEEE Annual EMBS International Conference, Istanbul, Turkey, 25–28 October 2001; pp. 3182–3184.
[49]  Palka, R.; Gratkowski, S.; Baniukiewicz, P. Inverse problems in magnetic induction tomography of low conductivity materials. Stud. Comput. Intell. 2008, 170, 163–170.
[50]  Soleimani, M.; Lionheart, W.R.B. Absolute conductivity reconstruction in magnetic induction tomography using a nonlinear method. IEEE Trans. Med. Imag. 2006, 25, 1521–1530.
[51]  Watson, S.; Igney, C.H.; D?ssel, O.; Williams, R.J.; Griffiths, H. A comparison of sensors for minimizing the primary signal in planar-array magnetic induction tomography. Physiol. Meas. 2005, 26, 319–331.
[52]  Dekdouk, B.; Yin, W.; Ktistis, C.; Armitage, D.W.; Peyton, A.J. A method to solve the forward problem in magnetic induction tomography based on the weakly coupled field approximation. IEEE Trans. Biomed. Eng. 2010, 57, 914–921.
[53]  Gursoy, D.; Scharfetter, H. Anisotropic conductivity tensor imaging using magnetic induction tomography. Physiol. Meas. 2010, 31, 135–145.
[54]  Watson, S.; Williams, R.J.; Griffiths, H.; Gough, W.; Morris, A. Magnetic induction tomography: Phase versus vector-voltmeter measurement techniques. Physiol. Meas. 2004, 24, 555–564.
[55]  Puwal, S.; Roth, B.J. Fourier analysis in magnetic induction tomography: Mapping of anisotropic, inhomogeneous resistivity. Meas. Sci. Technol. 2011, 22, 1–8.
[56]  Tumanski, S. Induction coil sensors—A review. Meas. Sci. Technol. 2007, 18, 31–46.
[57]  Scharfetter, H.; Ninaus, W.; Puswald, B.; Petrova, G.I.; Kovachev, D.; Hutten, H. Inductively Coupled Wideband Transceiver for Bioimpedance Spectroscopy (IBIS). Ann. NY Acad. Sci. 1999, 873, 322–334.
[58]  Karbeyaz, B.U.; Gencer, N.G. Electrical conductivity imaging via contactless measurements: An experimental study. IEEE Trans. Med. Imag. 2003, 22, 627–635.
[59]  Riedel, C.H.; Keppelen, M.; Nani, S.; Merges, R.D.; D?ssel, O. Planar system for magnetic induction conductivity measurement using a sensor matrix. Physiol.Meas. 2004, 25, 403–411.
[60]  Xu, Z.; Luo, H.; He, W.; He, C.; Song, X.; Zhang, Z. A multi-channel magnetic induction tomography measurement system for human brain model imaging. Physiol. Meas. 2003, 30, 175–186.
[61]  Ketchen, M.B.; Wolfgang, K.; Goubau, M.; Clarke, J.; Donaldson, G.B. Superconducting thin–film gradiometer. J. Appl. Phys. 1978, 44, 4111–4116.
[62]  Stolz, R.; Fritzsch, L.; Meyer, H.G. LTS SQUID sensor with a new configuration. Supercond. Sci. Technol. 1999, 12, 806–808.
[63]  Cantor, R.; Hall, A.; Matlachov, A. Thin-film planar gradiometer with long baseline. J. Phys. Conf. Ser. 2006, 43, 1223–1226.
[64]  Scharfetter, H.; Rauchenzauner, S.; Merwa, R.; Biró, O.; Hollaus, K. Planar gradiometer for magnetic induction tomography (MIT): Theoretical and experimental sensitivity maps for a low-contrast phantom. Physiol. Meas. 2004, 25, 325–333.
[65]  Scharfetter, H.; Merwa, R.; Pilz, K. A new type of gradiometer for the receiving circuit of magnetic induction tomography (MIT). Physiol. Meas. 2005, 26, 307–318.
[66]  Merwa, R.; Hollaus, K.; Brunner, P.; Scharfetter, H. Solution of the inverse problem of magnetic induction tomography (MIT). Physiolog. Meas. 2006, 26, 241–250.
[67]  Maimaitijiang, Y.; Roula, M.A.; Kahlert, J. Approaches for improving image quality in magnetic induction tomography. Physiol. Meas. 2010, 31, 147–156.
[68]  Peyton, A.J.; Yu, Z.Z.; Lyon, G. An overview of electromagnetic inductance tomography: Description of three different systems. Meas. Sci. Technol. 1996, 7, 261–271.
[69]  Yin, W.; Dekdouk, B.; Ktistis, C.; Peyton, A.J. Evaluation of the effects of the screen based on an analytical solution of a simplified MIT system. J. Phys. Conf. Ser. 2010, 224, 012154.
[70]  Griffiths, H.; Zolgharni, M.; Ledger, P.D.; Watson, S. The cardiff Mk2b MIT head array: Optimising the coil configuration. J. Phys. Conf. Ser. 2010, 224, 012046.
[71]  Igney, C.H.; Watson, S.; Williams, R.J.; Griffiths, H.; D?ssel, O. Design and performance of a planar-array MIT system with normal sensor alignment. Physiol. Meas. 2005, 26, 263–278.
[72]  Soleimani, M.; Tamburrino, A. Shape reconstruction in magnetic induction tomography using multifrequency data. Int. J. Inf. Syst. Sci. 2006, 2, 343–353.
[73]  Yu, Z.Z.; Peyton, A.J.; Xu, L.A.; Beck, M.S. Electromagnetic inductance tomography (EMT): Sensor, electronics and image reconstruction for a system with a rotatable parallel excitation. IEE Proceed. Sci. Meas. Technol. 1998, 145, 20–25.
[74]  Stawicki, K.; Gratkowski, S.; Komorowski, M.; Pietrusewicz, T. A new transducer for magnetic induction tomography. IEEE Trans. Magn. 2009, 45, 1832–1835.
[75]  Barba, P.D.; Mognaschi, M.E.; Palka, R.; Savini, A. Optimization of the MIT field exciter by a multiobjective design. IEEE Trans. Magn. 2009, 45, 1530–1533.
[76]  Hamsch, M.; Igney, C.H.; Vauhkonen, M. Channel Magnetic Induction Tomography System Featuring Parallel Readout. In IFMBE Proceedings, ICEBI; Springer: Berlin/Heidelberg, Germany, 2007; Volume 17, pp. 484–487.
[77]  Watson, S.; Morris, A.; Williams, R.J.; Griffiths, H.; Gough, W. A primary field compensation scheme for planar array magnetic induction tomography. Physiol. Meas. 2004, 25, 271–279.
[78]  Eichardt, E.; Igney, C.H.; Kahlert, J.; Hamsch, M.; Vauhkonen, M.; Haueisen, J. Sensitivity Comparisons of Cylindrical and Hemi-spherical Coil Setups for Magnetic Induction Tomography. IFMBE Proceedings World Conference, Munich, Germany, 7–12 September 2009. Volume 25/IV; pp. 269–272.
[79]  Gursoy, D.; Scharfetter, H. The effect of receiver coil orientations on the imaging performance of magnetic induction tomography. Meas. Sci. Technol. 2009, 20, 1–9.
[80]  Gursoy, D.; Scharfetter, H. Optimum receiver array design for magnetic induction tomography. IEEE Trans. Biomed. Eng. 2009, 56, 1435–1441.
[81]  Dekdouk, B.; Ktistis, C.; Armitage, D.W.; Peyton, A.J. Assessing the feasibility of detecting a Hemorrhagic type stroke using a 16 channel Magnetic Induction System. J. Phys. Conf. Ser. 2010, 224, 012047.
[82]  Bras, N.B.; Martins, R.C.; Serra, A.C. Improvements in the measurement system of a biological magnetic induction tomographical experimental setup. J. Phys. Conf. Ser. 2010, 238, 012057.
[83]  Scharfetter, H.; Issa, I.; Gürsoy, D. Tracking of object movements for artefact suppression in Magnetic Induction Tomography (MIT). J. Phys. Conf. Ser. 2010, 224, 012040.
[84]  Park, G.S.; Kim, D.S. Development of a magnetic inductance tomography system. IEEE Trans. Magn. 2005, 41, 1932–1935.
[85]  Jenks, W.; Sadeghi, S.S.; Wikswo, J.P. SQUIDs for nondestructive evaluation. J. Phys. D. Appl. Phys. 1997, 30, 293–323.
[86]  Deng, Y.; Liu, X. Electromagnetic imaging methods for nondestructive evaluation applications. Sensors 2011, 11, 774–808.
[87]  Mück, M.; McDermott, R. Radio-frequency amplifiers based on dc SQUIDs. Supercond. Sci. Technol. 2010, 23, 1–11.
[88]  Liu, Z.; Xu, Z.; Luo, H. The Application of Magnetic Sensor in MIT, Proceedings of World Automation Congress 2008, Waikoloa, HI, USA, 18 September–2 October 2008; pp. 1–4.
[89]  Krause, H.J.; Panaitov, G.I. Conductivity tomography for non-destructive evaluation using pulsed eddy current with HTS SQUID magnetometer. IEEE Trans. Appl. Supercond. 2003, 13, 215–218.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133