We have successfully developed a surface plasmon resonance (SPR) measurement system for the on-site immunoassay of real samples. The system is composed of a portable SPR instrument (290 mm(W) x 160 mm(D) x 120 mm(H)) and a microfluidic immunoassay chip (16 mm(W) x 16 mm(D) x 4 mm(H)) that needs no external pump system. An integrated vertical capillary tube functions as a large volume (150 μL ) passive pump and a waste reservoir that has sufficient capacity for several refill operations. An immunoassay was carried out that employed the direct injection of a buffer and a test sample in sequence into a microfluidic chip that included 9 antibody bands and 10 reference reagent bands immobilized in the flow channel. By subtracting a reliable averaged reference sensorgram from the antibody, we effectively reduced the influence of the non-specific binding, and then our chip successfully detected the specific binding of spiked IgG in non-homogeneous milk. IgG is a model antigen that is certain not to be present in non-homogeneous milk, and non-homogeneous milk is a model of real sample that includes many interfering foreign substances that induce non-specific binding. The direct injection of a real sample with no pretreatment enabled us to complete the entire immunoassay in several minutes. This ease of operation and short measuring time are acceptable for on-site agricultural, environmentaland medical testing.
References
[1]
Ho, J.A.A.; Wauchope, R.D. A strip liposome immunoassay for Aflatoxin B1. Anal. Chem. 2002, 74, 1493–1496, doi:10.1021/ac010903q. 12033235
[2]
Kabir, S. Review article: Clinic-based testing for Helicobacter pylori infection by enzyme immunoassay of faeces, urine and saliva. Aliment. Pharmacol. Ther. 2003, 17, 1345–1354, doi:10.1046/j.1365-2036.2003.01577.x. 12786628
[3]
Pal, A.; Dhar, T.K. An analytical device for on-site immunoassay. demonstration of its applicability in semiquantitative detection of Aflatoxin B1 in a batch of samples with Ultrahigh Sensitivity. Anal. Chem. 2004, 76, 98–104, doi:10.1021/ac034694g. 14697037
[4]
J?nsson, C.; Aronsson, M.; Rundstrom, G.; Pettersson, C.; Mendel-Hartvig, I.; Bakker, J.; Martinsson, E.; Liedberg, B.; MacCraith, B.; Ohman, O.; Melin, J. Silane-dextran chemistry on lateral flow polymer chips for immunoassays. Lab Chip 2008, 8, 1191–1197, doi:10.1039/b800297e. 18584097
[5]
Skottrup, P.D.; Nicolaisen, M.; Justesen, A.F. Towards on-site pathogen detection using antibody-based sensors. Biosens. Bioelectron. 2008, 24, 339–348, doi:10.1016/j.bios.2008.06.045. 18675543
[6]
Keay, R.; McNeil, C. Separation-free electrochemical immunosensor for rapid determination of atrazine. Biosens. Bioelectron. 1998, 13, 963–970, doi:10.1016/S0956-5663(98)00008-6. 9839385
[7]
Charles, P.T.; Gauger, P.R.; Patterson, C.H.; Kusterbeck, A.W. On-site immunoanalysis of nitrate and nitroaromatic compounds in Groundwater. Environ. Sci. Technol. 2000, 34, 4641–4650, doi:10.1021/es001099c.
[8]
van Bergen, S.K.; Bakaltcheva, I.B.; Lundgren, J.S.; Shriver-Lake, L.C. On-site detection of explosives in Groundwater with a fiber optic biosensor. Environ. Sci. Technol. 2000, 34, 704–708, doi:10.1021/es990815b.
[9]
Sapsford, K.E.; Charles, P.T.; Patterson, C.H.; Ligler, F.S. Demonstration of four immunoassay formats using the array biosensor. Anal. Chem. 2002, 74, 1061–1068, doi:10.1021/ac0157268. 11924964
[10]
Slavík, R.; Homola, J.; ?tyroky, J.; Brynda, E. Novel spectral fiber optic sensor based on surface plasmon resonance. Sens. Actuat. B: Chem. 2001, 74, 106–111, doi:10.1016/S0925-4005(00)00718-8.
[11]
Kawazumi, H.; Gobi, K.V.; Ogino, K.; Maeda, H.; Miura, N. Compact surface plasmon resonance (SPR) immunosensor using multichannel for simultaneous detection of small molecule compounds. Sens. Actuat. B: Chem. 2005, 108, 791–796, doi:10.1016/j.snb.2004.11.069.
[12]
Kim, S.J.; Gobi, K.V.; Harada, R.; Shankaran, D.R.; Miura, N. Miniaturized portable surface plasmon resonance immunosensor applicable for on-site detection of low-molecular-weight analytes. Sens. Actuat. B: Chem. 2006, 115, 349–356, doi:10.1016/j.snb.2005.09.025.
Kim, S.J.; Gobi, K.V.; Iwasaka, H.; Tanaka, H.; Miura, N. Novel miniature SPR immunosensor equipped with all-in-one multi-microchannel sensor chip for detecting low-molecular-weight analytes. Biosens. Bioelectron. 2007, 23, 701–707, doi:10.1016/j.bios.2007.08.010. 17890075
[19]
Du, M.; Zhou, F. Postcolumn renewal of sensor surfaces for high-performance liquid chromatography-surface plasmon resonance detection. Anal. Chem. 2008, 80, 4225–4230, doi:10.1021/ac702632y. 18457411
[20]
Yager, P.; Edwards, T.; Fu, E.; Helton, K.; Nelson, K.; Tam, M.; Weigl, B. Microfluidic diagnostic technologies for global public health. Nature 2006, 442, 412–418, doi:10.1038/nature05064. 16871209
Dong, L.; Jiang, H. Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter 2007, 3, 1223–1230, doi:10.1039/b706563a.
[25]
Samel, B.; Chretien, J.; Yue, R.; Griss, P.; Stemme, G. Wafer-level process for single-use buckling-film microliter-range pumps. J. Microelectromech. Syst. 2007, 16, 795–801, doi:10.1109/JMEMS.2007.901642.
[26]
Blanco-Gomez, G.; Glidle, A.; Flendrig, L.M.; Cooper, J.M. Integration of low-power microfluidic pumps with biosensors within a laboratory-on-a-chip device. Anal. Chem. 2009, 81, 1365–1370, doi:10.1021/ac802006d. 19143543
[27]
Henighan, T.; Giglio, D.; Chen, A.; Vieira, G.; Sooryakumar, R. Patterned magnetic traps for magnetophoretic assembly and actuation of microrotor pumps. Appl. Phys. Lett. 2011, 98, 103505:1–103505:3.
[28]
Hosokawa, K.; Sato, K.; Ichikawa, N.; Maeda, M. Power-free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis. Lab Chip 2004, 4, 181–185, doi:10.1039/b403930k. 15159775
Srivastava, N.; Din, C.; Judson, A.; MacDonald, N.C.; Meinhart, C.D. A unified scaling model for flow through a lattice of microfabricated posts. Lab Chip 2010, 10, 1148–1152, doi:10.1039/b919942j. 20390133
[36]
Washburn, E.W. The dynamics of capillary flow. Phys. Rev. 1921, 17, 273–283, doi:10.1103/PhysRev.17.273.
Zimmermann, M.; Schmid, H.; Hunziker, P.; Delamarche, E. Capillary pumps for autonomous capillary systems. Lab Chip 2007, 7, 119–125, doi:10.1039/b609813d. 17180214
[39]
Delamarche, E.; Bernard, A.; Schmid, H.; Bietsch, A.; Michel, B.; Biebuyck, H. Microfluidic networks for chemical patterning of substrates: Design and application to bioassays. J. Am. Chem. Soc. 1998, 120, 500–508, doi:10.1021/ja973071f.