An electrochemical microbiosensor for DNA has been fabricated based on new acrylic microspheres modified with reactive N-acryloxysuccinimide (NAS) functional groups. Hydrophobic poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesized in an emulsion form with a simple one-step photopolymerization technique. Aminated DNA probe was attached to the succinimde functional group of the acrylic microspheres via covalent bonding. The hybridization of the immobilized DNA probe with the complementary DNA was studied by differential pulse voltametry using anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) as the electroactive hybridization label. The influences of many factors such as duration of DNA probe immobilization and hybridization, pH, type of ions, buffer concentrations, ionic strength, operational temperature and non-complementary DNA on the biosensor performance were evaluated. Under optimized conditions, the DNA microbiosensor demonstrated a linear response range to target DNA over a wide concentration range of 1.0 × 10?16 and 1.0 ′ 10?8 M with a lower limit of detection (LOD) of 9.46 ′ 10?17 M (R2 = 0.97). This DNA microbiosensor showed good reproducibility with 2.84% RSD (relative standard deviation) (n = 3). Application of the NAS-modified acrylic microspheres in the construction of DNA microbiosensor had improved the overall analytical performance of the resultant DNA microbiosensor when compared with other reported DNA biosensors using other nano-materials for membranes and microspheres as DNA immobilization matrices.
Ilaria, M.; Maria, M.; Sara, T.; Ronghui, W.; Maria, M.S.; Mascini, M. Direct immobilization of DNA probes for the development of affinity biosensors. Bioelectrochemistry 2005, 66, 129–138, doi:10.1016/j.bioelechem.2004.04.008. 15833713
[3]
Feng, K.J.; Yang, Y.H.; Wang, Z.J.; Jiang, J.H.; Shen, G.L.; Yu, R.Q. A nano-porous CeO2/Chitosan composite film as immobilization matrix for colorectal cancer DNA sequence-selective electrochemical biosensor. Talanta 2006, 70, 561–565, doi:10.1016/j.talanta.2006.01.009. 18970808
[4]
Arora, K.; Prabhakar, N.; Chand, S.; Malhotra, B.D. Immobilization of single stranded DNA probe onto polypyrrole-polyvinyl sulfonate for application to DNA hybridization biosensor. Sens. Actuat. B Chem. 2007, 126, 655–663, doi:10.1016/j.snb.2007.04.029.
[5]
Xu, S.; Tu, G.; Peng, B.; Han, X. Self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) nanosphere for fabrication of a mediatorless biosensor. Anal. Chim. Acta 2006, 570, 151–157, doi:10.1016/j.aca.2006.04.020. 17723393
Arora, K.; Chaubey, A.; Singhal, S.; Sigh, R.P.; Samanta, R.B.; Pandey, M.K.; Chand, S.; Malhotra, B.D. Application of electrochemically prepared polypyrrole-polyvinyl sulphonate films to DNA biosensor. Biosens. Bioelectron. 2006, 21, 1777–1783, doi:10.1016/j.bios.2005.09.002. 16226454
[8]
Lucarelli, F.; Palchetti, I.; Marrazza, G.; Mascini, M. Electrochemical DNA biosensor as screening tool for the detection of toxicants in water and wastewater samples. Talanta 2002, 56, 949–957, doi:10.1016/S0039-9140(01)00655-5. 18968574
[9]
Mian, J.; Joseph, W. Recognition and detection of oligonucleotides in the presence of chromosomal DNA based on entrapment within conducting-polymer networks. J. Electroanal. Chem. 2001, 500, 584–589, doi:10.1016/S0022-0728(00)00443-5.
[10]
Zhou, X.C.; Huang, L.Q.; Li, S.F.Y. Microgravimetric DNA sensor based on quartz microbalance: Comparison of oligonucleotide immobilization method and application in genetic diagnosis. Biosens. Bioelectron. 2001, 16, 85–95, doi:10.1016/S0956-5663(00)00136-6. 11261857
[11]
Mouffouk, F.; Higgins, S.J. A biotin-functionalised poly(3,4-ethylene dioxy thiophene) coated microelectrode which responds electrochemically to avidin binding. Electrochem. Commun. 2006, 8, 15–20, doi:10.1016/j.elecom.2005.10.009.
[12]
Youssoufi, H.K.; Markrouf, B. Electrochemical biosensor of DNA hybridization by ferrocenyl functionalized polypyrrole. Anal. Chim. Acta 2002, 469, 85–92, doi:10.1016/S0003-2670(02)00539-1.
[13]
Feng, L.; Wei, C.; Shusheng, Z. Development of DNA electrochemical biosensor based on covalent immobilization of DNA probe by direct coupling of sol-gel and self-assembly technologies. Biosens. Bioelectron. 2008, 24, 781–786, doi:10.1016/j.bios.2008.06.052.
[14]
Ronghui, W.; Sara, T.; Maria, M.; Maria, M.S.; Mascini, M. Immobilization of DNA probes for the development of SPR-based sensing. Biosens. Bioelectron 2004, 20, 967–974, doi:10.1016/j.bios.2004.06.013. 15530793
[15]
Oscar, A.L.; Susana, C.; Maria, P.; Jose, M.P. DNA sensor base on an Escherichia coli lac Z gene probe immobilization at self-assembled monolayers-modified gold electrodes. Talanta 2007, 73, 838–844, doi:10.1016/j.talanta.2007.04.059. 19073109
[16]
Lisa, M.S.; Guadalupe, A.R.; Esther, V.B. Morphological studies of ligodeoxyribonucleotides probes covalently immobilized at polystyrene modified surfaces. J. Biotechnol. 2005, 118, 233–245, doi:10.1016/j.jbiotec.2005.05.008. 15993969
[17]
Kerman, K.; Ozkan, D.; Kara, P.; Meric, B.; Gooding, J.J.; Ozsoz, M. Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes. Anal. Chim. Acta 2002, 462, 39–47, doi:10.1016/S0003-2670(02)00308-2.
[18]
Ozkan, D.; Erdem, A.; Kara, P.; Kerman, K.; Gooding, J.J.; Nielsen, P.E.; Ozsoz, M. Electrochemical detection of hybridization using peptide nucleic acids and methylene blue on self-assembled alkanethiol monolayer modified gold electrodes. Electrochem. Commun. 2002, 4, 796–802, doi:10.1016/S1388-2481(02)00448-4.
Zammatteo, N.; Jeanmart, L.; Hamels, S.; Courtois, S.; Louette, P.; Hevesi, L.; Remacle, J. Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays. Anal. Biochem. 2000, 280, 143–150, doi:10.1006/abio.2000.4515. 10805532
[21]
Jyoti, C.; Kumar, P.; Gupta, K.C. N-(3-Triethoxysilylpropyl)-6-(N-maleimido)-hexanamide: An eYcient heterobifunctional reagent for the construction of oligonucleotide microarrays. Anal. Biochem. 2006, 357, 240–248, doi:10.1016/j.ab.2006.07.006. 16930520
[22]
Wang, Y.; Prokein, T.; Hinz, M.; Seliger, H.; Goedel, W.A. Immobilization and hybridization of oligonucleotides on maleimido-terminated self-assembled monolayers. Anal. Biochem. 2005, 344, 216–223, doi:10.1016/j.ab.2005.05.041. 16061196
[23]
Yang, H.; Zhu, Y. Size dependence of SiO2 particles enhanced glucose biosensor. Talanta 2006, 68, 569–574, doi:10.1016/j.talanta.2005.04.057. 18970358
[24]
Merkoci, A. Nanoparticles-based strategies for DNA, protein and cell sensors. Biosens. Bioelectron. 2010, 26, 1164–1177, doi:10.1016/j.bios.2010.07.028. 20678915
[25]
Jiang, C.; Yang, T.; Jiao, K.; Gao, H. A DNA electrochemical sensor with poly-l-lysine/single-walled carbon nanotubes films and its application for the highly sensitive EIS detection of PAT gene fragment and PCR amplification of NOS gene. Electrochim. Acta. 2008, 53, 2917–2924, doi:10.1016/j.electacta.2007.11.015.
[26]
Niu, S.; Zhao, M.; Hu, L.; Zhang, S. Carbon nanotube-enhanced DNA biosensor for DNA hybridization detection using rutin-Mn as electrochemical indicator. Sens. Actuators B Chem. 2008, 135, 200–205, doi:10.1016/j.snb.2008.08.022.
[27]
Uygun, A. DNA hybridization electrochemical biosensor using a functionalized polythiophene. Talanta 2009, 79, 194–198, doi:10.1016/j.talanta.2009.03.049. 19559864
[28]
Sun, W.; Qin, P.; Gao, H.; Li, G.; Jiao, K. Electrochemical DNA biosensor based on chitosan/nano-V2O5/MWCNTs composite film modified carbon ionic liquid electrode and its application to the LAMP product of Yersinia enterocolitica gene sequence. Biosens. Bioelectron. 2010, 25, 1264–1270, doi:10.1016/j.bios.2009.10.011. 19926468
[29]
Yang, J.; Yang, T.; Feng, Y.; Jiao, K. A DNA electrochemical sensor based on nanogold-modiWed poly-2, 6-pyridinedicarboxylic acid Wlm and detection of PAT gene fragment. Anal. Biochem. 2007, 365, 24–30, doi:10.1016/j.ab.2006.12.039. 17420003
[30]
Horak, D.; ?panova, A.; Tvrdikova, J.; Rittich, B. Streptavidin-modified magnetic poly (2-ydroxyethyl methacrylate-coglycidyl methacrylate) microspheres for selective isolation of bacterial DNA. Eur. Polym. J. 2010, 47, 1090–1096.
[31]
Lai, G.S.; Zhang, H.L.; Han, D.Y. A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode. Sens. Actuators B Chem. 2008, 129, 497–503, doi:10.1016/j.snb.2007.08.041.
[32]
Zhang, W.; Yang, T.; Li, X.; Wang, D.; Jiao, K. Conductive architecture of Fe2O3 microspheres/self-doped polyaniline nanofibers on carbon ionic liquid electrode for impedance sensing of DNA hybridization. Biosens. Bioelectron. 2009, 25, 428–434, doi:10.1016/j.bios.2009.07.032. 19713094
[33]
Wang, X.; Yang, T.; Li, X.; Jiao, K. Three-step electrodeposition synthesis of self-doped polyaniline nanofiber-supported flower-like Au microspheres for high-performance biosensing of DNA hybridization recognition. Biosens. Bioelectron. 2011, 26, 2953–2959, doi:10.1016/j.bios.2010.11.045. 21185714
[34]
Fan, H.; Ju, P.; Ai, S. Controllable synthesis of CdSe nanostructures with tunable morphology and their application in DNA biosensor of Avian Influenza Virus. Sens. Actuat. B Chem. 2010, 149, 98–104, doi:10.1016/j.snb.2010.06.023.
[35]
Chen, J.P.; Chiu, S.H. A poly (N-isopropylacrylamide-co-N-acryloxysuccinimede-co-2-hydroxyethyl methacrylate) composite hydrogel membrane for urease immobilization to enhance urea hydrolysis rate by temperature swing. Enzym. Micro. Technol. 2000, 26, 359–367, doi:10.1016/S0141-0229(99)00181-7.
[36]
Chaix, C.; Pacard, E.; Elaissari, A.; Hilaire, J.F.; Picot, C. Surface functionalization of oil-in-water nanoemulsion with a reactive copolymer: Colloidal characterization and peptide immobilization. Coll. Surf. B Biointer. 2002, 29, 39–52.
[37]
Wong, E.L.S.; Gooding, J.J. Charge transfer through DNA: A selective electrochemical DNA biosensor. Anal. Chem. 2006, 78, 2138–2144, doi:10.1021/ac0509096. 16579591
[38]
Wong, E.L.S.; Mearns, F.J.; Gooding, J.J. Further development of an electrochemical DNA hybridization biosensor based on long-range electron transfer. Sens. Actuat. B Chem. 2005, 111–122, 515–521.
[39]
Xu, S.; Tu, G.; Peng, B.; Han, X. Self-assembling gold nanoparticles on thiol-functionlaizad poly(styrene-co-acrylic acid) nanosphere for fabrication of a mediatorless biosensor. Anal. Chim. Acta 2006, 570, 151–157, doi:10.1016/j.aca.2006.04.020. 17723393
[40]
Wong, E.L.S.; Chow, E.; Gooding, J.J. The electrochemical detection of cadmium using surface-immobilized DNA. Electrochem. Commun. 2007, 9, 845–849, doi:10.1016/j.elecom.2006.11.018.
[41]
Wong, E.L.S.; Erohkin, P.; Gooding, J.J. A comparison of cationic and anionic intercalators or the electrochemical transduction of DNA hybridization via long range electron transfer. Electrochem. Commun. 2004, 6, 648–654, doi:10.1016/j.elecom.2004.05.002.
[42]
De la Escosura-Muniz, A.; Gonzalez-Garcia, M.B.; Costa-Garcis, A. DNA hybridization sensor based on aurothiomalate electroactive label on glassy carbon electrodes. Biosens. Bioelectron. 2007, 22, 1048–1054, doi:10.1016/j.bios.2006.04.024. 16762539
[43]
Kerman, K.; Morita, Y.; Takamura, Y.; Ozsoz, M.; Tamiya, E. Modification of Escharichia coli singles for electrochemical detection of DNA hybridization. Anal. Chim. Acta. 2004, 510, 169–174, doi:10.1016/j.aca.2003.12.067.
[44]
Hames, B.B.; Higgins, S.J. Nucleic Acid Hybridisation—A Practical Approach; Oxford University Press: New York, NY, USA, 1985; p. 78.
[45]
Jin, P. Voltametric detection of DNA hybridization using a non-competitive enzyme linked assay. Biochem. Eng. J. 2007, 35, 183–190, doi:10.1016/j.bej.2007.01.012.
[46]
Metzenberg, S. Working with DNA: The Basics; Taylor & Francis Group: Florence, KY, USA, 2007.
[47]
Zhu, N.; Cai, H.; He, P.; Fang, Y. Tris(2,2′-bipyridyl)cobalt(III)-doped silica nanoparticles DNA probe for electrochemical detection DNA hybridization. Anal. Chem. 2005, 481, 181–189.
[48]
Teles, F.R.R.; Fonseca, L.P. Trend in DNA biosensors. Talanta 2008, 77, 606–623, doi:10.1016/j.talanta.2008.07.024.