全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

FPGA Implementation of Generalized Hebbian Algorithm for Texture Classification

DOI: 10.3390/s120506244

Keywords: system on programmable chip, reconfigurable computing, principal component analysis, generalized Hebbian algorithm, texture classification, FPGA

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a novel hardware architecture for principal component analysis. The architecture is based on the Generalized Hebbian Algorithm (GHA) because of its simplicity and effectiveness. The architecture is separated into three portions: the weight vector updating unit, the principal computation unit and the memory unit. In the weight vector updating unit, the computation of different synaptic weight vectors shares the same circuit for reducing the area costs. To show the effectiveness of the circuit, a texture classification system based on the proposed architecture is physically implemented by Field Programmable Gate Array (FPGA). It is embedded in a System-On-Programmable-Chip (SOPC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient design for attaining both high speed performance andlow area costs.

References

[1]  Jolliffe, I.T. Principal Component Analysis, 2nd ed. ed.; Springer: Berlin, Heidelberg, Germany, 2002.
[2]  Dagher, I.; Nachar, R. Face recognition using (incremental) IPCA-ICA algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 996–1000, doi:10.1109/TPAMI.2006.118. 16724592
[3]  Kim, K.; Franz, M.O.; Scholkopf, B. Iterative kernel principal component analysis for image modeling. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1351–1366, doi:10.1109/TPAMI.2005.181. 16173181
[4]  Roweis, S. EM algorithms for PCA and SPCA. Adv. Neural Inf. Process. Syst. 1998, 10, 626–632.
[5]  Sajid, I.; Ahmed, M.M.; Taj, I. Design and Implementation of a Face Recognition System Using Fast PCA. Proceedings of the IEEE International Symposium on Computer Science and its Applications, Hobart, Australia, 13–15 October 2008; pp. 126–130.
[6]  Sharma, A.; Paliwal, K.K. Fast principal component analysis using fixed-point algorithm. Pattern Recogn. Lett. 2007, 28, 1151–1155, doi:10.1016/j.patrec.2007.01.012.
[7]  Boonkumklao, W.; Miyanaga, Y.; Dejhan, K. Flexible PCA Architecture Realized on FPGA. Proceedings of the International Symposium on Communications and Information Technologies, ChiangMai, Thailand, 14–16 November 2001; pp. 590–593.
[8]  Chen, T.-C.; Liu, W.; Chen, L.-G. VLSI Architecture of Leading Eigenvector Generation for On-Chip Principal Component Analysis Spike Sorting System. Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–24 August 2008; pp. 3192–3195.
[9]  Chen, D.; Han, J.-Q. An FPGA-based face recognition using combined 5/3 DWT with PCA methods. J. Commun. Comput. 2009, 6, 1–8.
[10]  Ngo, H.T.; Rajkiran, G.; Asari, V.K. A Flexible and Efficient Hardware Architecture for Real-Time Face Recognition Based on Eigenface. Proceedings of the IEEE Computer Society Annual Symposium on VLSI, Tampa, FL, USA, 11–12 May 2005; pp. 280–281.
[11]  Gottumukkal, R.; Ngo, H.T.; Asari, V.K. Multi-lane architecture for eigenface based real-time face recognition. Microprocess. Microsyst. 2006, 30, 216–224, doi:10.1016/j.micpro.2005.07.003.
[12]  Pavan Kumar, A.; Kamakoti, V.; Das, S. System-on-programmable-chip implementation for on-line face recognition. Pattern Recogn. Lett. 2007, 28, 342–349, doi:10.1016/j.patrec.2006.04.006.
[13]  Haykin, S. Neural Networks and Learning Machines, 3rd ed. ed.; Pearson: Upper Saddle River, NJ, USA, 2009.
[14]  Sanger, T.D. Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Netw. 1989, 12, 459–473.
[15]  Blake, G.; Dreslinski, R.G.; Mudge, T. A survey of multicore processors. IEEE Signal Process. Mag. 2009, 26, 26–37.
[16]  Carvajal, G.; Valenzuela, W.; Figueroa, M. Subspace-Based Face Recognition in Analog VLSI. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, UK, 2008; pp. 225–232.
[17]  Carvajal, G.; Valenzuela, W.; Figueroa, M. Image recognition in analog VLSI with on-chip learning. Artif. Neural Netw. 2009, 5768, 428–438.
[18]  Lin, S.J.; Hung, Y.T.; Hwang, W.J. Efficient hardware architecture based on generalized Hebbian algorithm for texture classification. Neurocomputing 2011, 74, 3248–3256, doi:10.1016/j.neucom.2011.05.010.
[19]  Sudha, N.; Mohan, A.R.; Meher, P.K. A self-configurable systolic architecture for face recognition system based on principal component neural network. IEEE Trans. Circuits Syst. Video Technol. 2011, 21, 1071–1084, doi:10.1109/TCSVT.2011.2133210.
[20]  Fowers, J.; Brown, G.; Cooke, P.; Stitt, G. A Performance and Energy Comparison of FPGAs, GPUs, and Multicores for Sliding-Window Applications. Proceedings of the ACM/SIGDA international symposium on Field Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2012; pp. 47–56.
[21]  Pauwels, K.; Tomasi, M.; Diaz Alonso, J.; Ros, E.; van Hulle, M. A comparison of FPGA and GPU for real-time phase-based optical flow, stereo, and local image features. IEEE Trans. Comput. 2012. in press.
[22]  Altera Corporation. NIOS II Processor Reference Handbook Ver 10.0, 2010. Available online: http://www.altera.com/literature/lit-nio2.jsp (accessed on 3 May 2012).
[23]  Altera Corporation. SOPC Builder User Guide, 2011. Available online: http://www.altera.com/literature/lit-sop.jsp (accessed on 3 May 2012).
[24]  Kansal, A.; Zhao, F.; Liu, J.; Kothari, N.; Bhattacharya, A. Virtual Machine Power Metering and Provisioning. Proceedings of the ACM Symposium on Cloud Computing, Indianapolis, IN, USA, 10–11 June 2010.
[25]  Altera Corporation. Quartus II Handbook Ver 11.1, 2011, 3. Available online: http://www.altera.com/literature/lit-qts.jsp (accessed on 3 May 2012).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133