全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
软件学报  2008 

Attribute Selection for Numerical Databases that Contain Correlations

Keywords: Feature Selection,Correlated Attribute,Two Dimensional Rule,Region Shape

Full-Text   Cite this paper   Add to My Lib

Abstract:

There are many correlated attributes in a database. Conventional attribute selection methods are not able to handle such correlations and tend to eliminate important rules that exist in correlated attributes. In this paper, we propose an attribute selection method that preserves important rules on correlated attributes. We rst compute a ranking of attributes by using conventional attribute selection methods. In addition, we compute two-dimensional rules for each pair of attributes and evaluate their importance for predicting a target attribute. Then, we evaluate the shapes of important two-dimensional rules to pick up hidden important attributes that are under-estimated by conventional attribute selection methods. After the shape evaluation, we re-calculate the ranking so that we can preserve the important correlations. Intensive experiments show that the proposed method can select important correlated attributes that are eliminated by conventional methods.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133