全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
软件学报  2001 

Genetic Algorithms Using Gradients of Object Functions
利用目标函数梯度的遗传算法

Keywords: SGA (standard genetic algorithm),GMGA (gradient modified genetic algorithm),DGMGA (discrete gradient modified genetic algorithm),fitness function,optimization
SGA(标准遗传算法)
,GMGA(梯度改进的遗传算法),DGMGA(离散的梯度改进遗传算法),适应度函数,优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

Most genetic algorithms do not use the knowledge in the related problem fields completely when searching the approximate solutions. A new kind of genetic algorithm with modified fitness functions the presented in this paper. In this algorithms, both the function value at the searching point and the function change rate at the point are combined into fitness functions. It makes the chromosome code chosen by probability be able to have both smaller function value (for minimum problem) and higher function change rate. The experimental results show that the new algorithm is convergent much faster than the standard genetic algorithm is.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133