Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions.
References
[1]
Tricoles, G.; Farhat, N.H. Microwave holography: Applications and techniques. Proc. IEEE 1977, 65, 108–121.
[2]
Deng, Y. Forward and Inverse Problems in Noninvasive Imaging TechniquesPh.D. Thesis. Michigan State University, East Lansing, MI, USA, 2009.
[3]
Zhu, Y.K.; Tian, G.Y.; Lu, R.S.; Zhang, H. A review of optical NDT technologies. Sensors 2011, 11, 7773–7798.
[4]
Achenbach, J. Quantitative nondestructive evaluation. Int. J. Solids Struct 2000, 37, 13–27.
[5]
Jiles, D.C. Review of magnetic methods for nondestructive evaluation. NDT Int 1988, 21, 311–319.
[6]
Jiles, D. Review of magnetic methods for nondestructive evaluation (Part 2). NDT Int 1990, 23, 83–92.
[7]
Mandayam, S.; Udpa, L.; Udpa, S.S.; Lord, W. Wavelet-based permeability compensation technique for characterizing magnetic flux leakage images. NDT&E Int 1997, 30, 297–303.
[8]
Afzal, M.; Udpa, S. Advanced signal processing of magnetic flux leakage data obtained from seamless gas pipeline. NDT&E Int 2002, 35, 449–457.
[9]
Ramuhalli, P.; Udpa, L.; Udpa, S.S. Electromagnetic NDE signal inversion by function-approximation neural networks. IEEE Trans. Magn 2002, 38, 3633–3642.
[10]
Ramuhalli, P.; Udpa, L.; Udpa, S.S. Neural network-based inversion algorithms in magnetic flux leakage nondestructive evaluation. J. Appl. Phys 2003, 93, 8274–8276.
[11]
Joshi, A.; Udpa, L.; Udpa, S.; Tamburrino, A. Adaptive wavelets for characterizing magnetic flux leakage signals from pipeline inspection. IEEE Trans. Magn 2006, 42, 3168–3170.
[12]
Haueisen, J.; Unger, R.; Beuker, T.; Bellemann, M.E. Evaluation of inverse algorithms in the analysis of magnetic flux leakage data. IEEE Trans. Magn 2002, 38, 1481–1488.
[13]
Amineh, R.K.; Koziel, S.; Nikolova, N.K.; Bandler, J.W.; Reilly, J.P. A space mapping methodology for defect characterization from magnetic flux leakage measurements. IEEE Trans. Magn 2008, 44, 2050–2065.
[14]
Park, G.S.; Park, E.S. Improvement of the sensor system in magnetic flux leakage-type Nondestructive Testing (NDT). IEEE Trans. Magn 2002, 38, 1277–1280.
[15]
Li, Y.; Wilson, J.; Tian, G.Y. Experiment and simulation study of 3D magnetic field sensing for magnetic flux leakage defect characterisation. NDT&E Int 2007, 40, 179–184.
[16]
Sophian, A.; Tian, G.Y.; Zairi, S. Pulsed magnetic flux leakage techniques for crack detection and characterisation. Sens. Actuat. A 2006, 125, 186–191.
[17]
Eggleston, M.R.; Schwabe, R.J.; Isaacson, D.; Coffin, L.F. The application of electric current computed tomography to defect imaging in metals. Rev. Prog. Quant. NDE 1990, 9, 455–462.
Borcea, L. Electrical impedance tomography. Inverse Probl 2002, 18, R99–R136.
[20]
Lionheart, W.R.B. EIT reconstruction algorithms pitfalls, challenges and recent developments. Physiol. Meas 2004, 25, 125–142.
[21]
Kemnaa, A.; Vanderborghta, J.; Kulessab, B.; Vereecken, H. Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. J. Hydrol 2002, 267, 125–146.
[22]
Stacey, R.W. Electrical Impedance Tomography. Technical Report SGP-TR-182;; The Department of Petroleum Engineering, Stanford University: Stanford, CA, USA, 2006.
[23]
Yang, W.; Peng, L. Image reconstruction algorithms for electrical capacitance tomography. Meas. Sci. Technol 2003, 14, R1–R13.
[24]
Soleimani, M.; Lionheart, W.R.B. Nonlinear image reconstruction for electrical capacitance tomography using experimental data. Meas. Sci. Technol 2005, 16, 1987–1996.
[25]
Soleimani, M.; Yalavarthy, P.K.; Dehghani, H. Helmholtz-type regularization method for permittivity reconstruction using experimental phantom data of electrical capacitance tomography. IEEE Trans. Instrum. Meas 2010, 59, 78–83.
[26]
Marashdeh, Q.; Warsito, W.; Fan, L.S.; Teixeira, F.L. Nonlinear forward problem solution for electrical capacitance tomography using feed forward neural network. IEEE Sens. J 2006, 6, 441–449.
[27]
Marashdeh, Q.; Warsito, W.; Fan, L.S.; Teixeira, F.L. A multimodal tomography system based on ECT sensors. IEEE Sens. J 2007, 7, 426–433.
[28]
Martinez, Olmos M.; Carvajal, M.A.; Morales, D.P.; Garcia, A.; Palma, A.J. Development of an electrical capacitance tomography system using four rotating electrodes. Sens. Actuat. A Phys 2008, 148, 366–375.
[29]
Knauss, L.A.; Orozco, A.; Woods, S.I.; Wang, Z. Advances in Magnetic-Based Current Imaging for High Resistance Defects and Sub-Micron Resolution. Proceedings of the 11th International Symposium on the Physical and Failure Analysis of Integrated Circuits, (IPFA’04), Hsinchu, Taiwan, 5–8 July 2004; pp. 267–270.
[30]
Knauss, L.; Woods, S.; Orozco, A. Current imaging using magnetic field sensors. Microelectron. Fail. Anal 2004, 1, 303–311.
[31]
Gramz, M.; Stepinski, T. Eddy current imaging, array sensors and flaw reconstruction. Res. Nondestruct. Eval 1994, 5, 157–174.
[32]
Udpa, S.S. Parametric Signal Processing for Eddy Current NDTPh.D. Thesis. Colorado State University, Fort Collins, CO, USA, 1983.
[33]
Udpa, L. Imaging of Electromagnetic NDT PhenomenaPh.D. Thesis. Colorado State University, Fort Collins, CO, USA, 1986.
[34]
Udpa, L.; Lord, W. Search based imaging technique for electromagnetic NDT. Proc. IEEE 1989.
[35]
Udpa, L.; Udpa, S.S. Neural Networks for the Classification of Nondestructive Evaluation Signals. IEE Proc-F Rad. Sig. Proc 1991, 138, 41–45.
[36]
Zorgati, R.; Duchene, B.; Lesselier, D.; Pons, F. Eddy current testing of anomalies in conductive qualitative materials part I: Quantitative imaging via diffraction tomography techniques. IEEE Trans. Magn 1991, 27, 4416–4437.
[37]
Guettinger, T.W.; Grotzn, K.; Wezel, H. Eddy current imaging. Mater. Eval 1993, 51, 444–451.
[38]
Luong, B.; Santosa, F. Quantitative imaging of corrosion in plates by eddy current methods. SIAM J. Appl. Math 1998, 58, 1509–1531.
[39]
Auld, B.A.; Moulder, J.C. Review of advances in quantitative eddy current nondestructive evaluation. J. Nondestruct. Eval 1999, 18, 3–36.
[40]
Albanese, R.; Rubinacci, G.; Villoney, F. An integral computational model for crack simulation and detection via eddy currents. J. Comput. Phys 1999, 152, 736–755.
[41]
Blodgett, M.; Hassan, W.; Nagy, P.B. Theoritical and experimental investigations of the lateral resolution of eddy current imaging. Mater. Eval 2000, 58, 647–654.
[42]
Grimberg, R.; Savin, A.; Radu, E.; Mihalache, O. Nondestructive evaluation of the severity of discontinuities in flat conductive materials by an eddy-current transducer with orthogonal coils. IEEE Trans. Magn 2000, 36, 299–307.
[43]
Soleimani, M.; Lionheart, W.R.B.; Peyton, A.J.; Ma, X.; Higson, S.R. A three-dimensional inverse finite-element method applied to experimental eddy-current imaging data. IEEE Trans. Magn 2006, 42, 1560–1567.
[44]
Abascal, J.F.P.J.; Lambert, M.; Lesselier, D.; Dorn, O. 3-D eddy-current imaging of metal tubes by gradient-based, controlled evolution of level sets. IEEE Trans. Magn 2008, 44, 4721–4729.
[45]
Nalladega, V. Design and Development of Scanning Eddy Current Force Microscopy for Characterization of Electrical, Magnetic and Ferroelectric Properties with Nanometer ResolutionPh.D. Thesis. University of Dayton, Dayton, OH, USA, 2009.
[46]
Nalladega, V.; Sathish, S.; Jata, K.V.; Blodgett, M.P. High resolution eddy current imaging with atomic force microscope. Rev. Quant. Nondestruct. Eval 2008, 27, 400–406.
[47]
Nalladega, V.; Sathish, S.; Jata, K.V.; Blodgett, M.P. Development of eddy current microscopy for high resolution electrical conductivity imaging using atomic force microscopy. Rev. Sci. Instrum 2008, 79, 1–11.
[48]
Dai, X.; Ludwig, R.; Palanisamy, R. Numerical simulation of pulsed eddy current nondestructive testing phenomena. IEEE Trans. Magn 1990, 26, 3089–3096.
[49]
Bowler, J.; Johnson, M. Pulsed eddy-current response to a conducting half-space. IEEE Trans. Magn 1997, 33, 2258–2264.
[50]
Giguere, S.; Lepine, B.A.; Dubois, J.M.S. Pulsed eddy current technology: Characterizing material loss with gap and lift-off variations. Res. Nondestruct. Eval 2001, 13, 119–129.
[51]
Tian, G.Y.; Sophian, A.; Taylor, D.; Rudlin, J. Multiple sensors on pulsed eddy-current detection for 3-D subsurface crack assessment. IEEE Sens. J 2005, 5, 90–96.
[52]
Yang, G.; Tamburrino, A.; Udpa, L.; Udpa, S.; Zeng, Z.; Deng, Y.; Que, P. Pulsed eddy current based giant magnetoresistive system for the inspection of aircraft structures. IEEE Trans. Magn 2010, 46, 910–917.
[53]
He, Y.; Pan, M.; Luo, F.; Tian, G. Pulsed eddy current imaging and frequency spectrum analysis for hidden defect nondestructive testing and evaluation. NDT&E Int 2011, 44, 344–352.
[54]
Fitzpatrick, G.L.; Thome, D.K.; Skaugset, R.L.; Shih, E.Y.C.; Shih, W.C.L. Magneto-optic/eddy current imaging of aging aircraft: A new NDI technique. Mater. Eval 1993, 51, 1402–1407.
[55]
Deng, Y.; Liu, X.; Fan, Y.; Zeng, Z.; Udpa, L.; Shih, W. Characterization of magneto-optic imaging data for aircraft inspection. IEEE Trans. Magn 2006, 42, 3228–3230.
[56]
Fan, Y.; Deng, Y.; Zeng, Z.; Udpa, L.; Shih, W.; Fitzpatrick, G. Aging Aircraft Rivet Site Inspection Using Magneto-Optic Imaging: Automation and Real-Time Image Processing. Proceedings of the 9th Joint FAA/DoD/NASA Aging Aircraft Conference, Atlanta, GA, USA, March 2006.
[57]
Zeng, Z.; Liu, X.; Deng, Y.; Udpa, L.; Xuan, L.; Shih, W.C.L.; Fitzpatrick, G.L. A parametric study of magneto-optic imaging using finite-element analysis applied to aircraft rivet site inspection. IEEE Trans. Magn 2006, 42, 3737–3744.
[58]
Joubert, P.Y.; Pinassaud, J. Linear magneto-optic imager for non-destructive evaluation. Sens. Actuat. A 2006, 129, 126–130.
[59]
Diraison, Y.L.; Joubert, P.Y.; Placko, D. Characterization of subsurface defects in aeronautical riveted lap-joints using multi-frequency eddy current imaging. NDT&E Int 2009, 42, 133–140.
[60]
Bosse, J.; Joubert, P.Y.; Larzabal, P.; Ferreol, A. High resolution approach for the localization of buried defects in the multi-frequency eddy current imaging of metallic structures. NDT&E Int 2010, 43, 250–257.
[61]
Cheng, Y.H.; Zhou, Z.F.; Tian, G.Y. Enhanced magneto-optic imaging system for nondestructive evaluation. NDT&E Int 2007, 40, 374–377.
[62]
Jander, A.; Smith, C.; Schneider, R. Magnetoresistive Sensors for Nondestructive Evaluation. Proceedings of the 10th SPIE International Symposium, Nondestructive Evaluation for Health Monitoring and Diagnostics, San Diego, CA, USA, 7–11 March 2005.
[63]
Wincheski, B.; Namkung, M. Deep Flaw Detection with Giant Magneto Resistive Based Self-nulling Probe. Technical Report;; NASA Langley Research Center: Hampton, VA, USA, 1999.
[64]
Yamada, S.; Chomsuwan, K.; Iwahara, M. Application of Giant Magnetoresistive Sensor for Nondestructive Evaluation. Proceedings of the 5th IEEE Conference on Sensors, Daegu, Korea, 22–25 October 2006.
[65]
Singh, W.S.; Rao, B.P.C.; Vaidyanathan, S.; Jayakumar, T.; Raj, B. Detection of leakage magnetic flux from near-side and far-side defects in carbon steel plates using a giant magneto-resistive sensor. Meas. Sci. Technol 2008, 19, 1–8.
[66]
Nair, N.V.; Melapudi, V.R.; Jimenez, H.R.; Liu, X.; Deng, Y.; Zeng, Z.; Udpa, L.; Moran, T.J.; Udpa, S.S. A GMR-based eddy current system for NDE of aircraft structures. IEEE Trans. Magn 2006, 42, 3312–3314.
[67]
Postolache, O.; Pereira, M.D.; Ramos, H.; Ribeirol, A.L. NDT on Aluminum Aircraft Plates based on Eddy Current Sensing and Image Processing. Proceedings of the IEEE International Instrumentation and Measurement Technology Conference, Victoria, BC, Canada, 12–15 May 2008.
[68]
Tsukada, K.; Kiwa, T.; Kawata, T.; Ishihara, Y. Low-frequency eddy current imaging using MR sensor detecting tangential magnetic field components for nondestructive evaluation. IEEE Trans. Magn 2006, 42, 3315–3317.
[69]
Deng, Y.; Liu, X.; Zeng, Z.; Koltenbah, B.; Bossi, R.; Steffes, G.; Udpa, L. Automated analysis of eddy current giant magneto resistive data. Rev. Quant. Nondestruct. Eval 2009, 28, 588–595.
[70]
Kim, J.; Yang, G.; Udpa, L.; Udpa, S. Classification of pulsed eddy current GMR data on aircraft structures. NDT&E Int 2010, 43, 141–144.
[71]
Zeng, Z.; Deng, Y.; Liu, X.; Udpa, L.; Udpa, S.S.; Koltenbah, B.; Bossi, R.; Steffes, G. EC-GMR data analysis for inspection of multilayer airframe structures. IEEE Trans. Magn 2011, 47, 1–10.
[72]
Griffiths, H. Magnetic induction tomography. Meas. Sci. Technol 2001, 12, 1126–1131.
[73]
Vachera, F.; Alves, F.; Gilles-Pascaud, C. Eddy current nondestructive testing with giant magnetoimpedance sensor. NDT&E Int 2007, 40, 439–442.
[74]
Rolomey, J.C. Recent european developments in active microwave imaging for industrial, scientific, and medical applications. IEEE Trans. Microwave Theory Tech 1989, 37, 2109–2117.
[75]
Garnero, L.; Franchois, A.; Hugonin, J.P.; Pichot, C.; Joachimowicz, N. Microwave imaging: Complex permittivity reconstruction by simulated annealing. IEEE Trans. Microwave Theory Tech 1991, 39, 1801–1807.
[76]
Weedon, W.H.; Chew, W.C.; Mayes, P.E. A step-frequency radar imaging system for microwave nondestructive evaluation. SPIE Proc 1994, 2275, 1–25.
[77]
Kharkovsky, S.; Zoughi, R. Microwave and millimeter-wave nondestructive testing and evaluation: Overview and recent advances. IEEE Instrum. Meas. Mag 2007, 10, 26–38.
[78]
Pastorino, M. Recent inversion procedures for microwave imaging in biomedical, subsurface detection and nondestructive evaluation applications. Measurement 2004, 36, 257–269.
[79]
Diener, L. Microwave near-field imaging with open-endedwaveguide comparison with other techniques of nondestructive testing. Res. Nondestr. Eval 1995, 7, 137–152.
[80]
Franchois, A.; Pichot, C. Microwave imaging-complex permittivity reconstruction with a levenberg-marquardt method. IEEE Trans. Antennas Propag 1997, 45, 203–215.
[81]
Belkebir, K.; Kleinman, R.E.; Pichot, C. Microwave imaging: Location and shape reconstruction from multifrequency scattering data. IEEE Trans. Microwave Theory Tech 1997, 45, 469–476.
[82]
Tabib-Azar, M.; Pathak, P.S.; Ponchak, G.; LeClair, S. Nondestructive superresolution imaging of defects and nonuniformities in metals, semiconductors, dielectrics, composites, and plants using evanescent microwaves. Rev. Sci. Instrum 1999, 70, 2783–2792.
[83]
Rhim, H.C.; Buyukozturk, O. Wideband microwave imaging of concrete for nondestructive testing. J. Struct. Eng 2000, 126, 1451–1457.
[84]
Rhim, H.C.; Bykztrk, O. Electromagnetic properties of concrete at microwave frequency range. ACI Mater. J 1998, 95, 262–271.
[85]
Pastorino, M.; Salvade, A.; Monleone, R.; Bartesaghi, T.; Bozza, G.; Randazzo, A. Detection of Defects in Wood Slabs by Using a Microwave Imaging Technique. Proceedings of the IEEE Instrumentation and Measurement Technology Conference, (IMTC’07), Warsaw, Poland, 1–3 May 2007.
[86]
Caorsi, S. Improved Microwave Imaging Procedure for Nondestructive Evaluation of Two Dimensional Structures. Technical Report;; University of Pavia: Pavia, Italy, 2003.
[87]
Caorsi, S.; Massa, A.; Pastorino, M.; Donelli, M. Improved microwave imaging procedure for nondestructive evaluations of two-dimensional structures. IEEE Trans. Antennas Propag 2004, 52, 1386–1397.
[88]
Benedetti, M.; Donelli, M.; Martini, A.; Massa, A.; Rosani, A. An Innovative Microwave Imaging Technique for Non Destructive Evaluation: Applications to Civil Structures Monitoring and Biological Bodies Inspection. Technical Report;; University of Trento: Trento, Italy, 2005.
[89]
Benedetti, M.; Donelli, M.; Martini, A.; Pastorino, M.; Rosani, A.; Massa, A. An innovative microwave-imaging technique for nondestructive evaluation: Applications to civil structures monitoring and biological bodies inspection. IEEE Trans. Instrum. Meas 2006, 55, 1878–1884.
[90]
Donelli, M.; Massa, A. Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers. IEEE Trans. Microwave Theory Tech 2005, 53, 1761–1776.
[91]
Poli, L.; Rocca, P. Exploitation of TE-TM Scattering Data For Microwave Imaging Through the Multi-Scaling Reconstruction Strategy. Technical Report;; University of Trento: Trento, Italy, 2011.
[92]
Langenberg, K.; Mayer, K.; Marklein, R. Nondestructive testing of concrete with electromagnetic and elastic waves: Modeling and imaging. Cement Concr. Compos 2006, 28, 370–383.
[93]
Zoughi, R.; Kharkovsky, S. Microwave and millimetre wave sensors for crack detection. Fatigue Fract. Eng. Mater. Struct 2008, 31, 695–713.
Beckmann, J.; Richter, H.; Zscherpel, U.; Ewert, U.; Weinzierl, J.; Schmidt, L.P.; Rutz, F.; Koch, M.; Richter, H.; Hubers, H.W. Imaging Capability of Terahertz and Millimeter-Wave Instrumentations for NDT of Polymer Materials. Proceedings of the European Conference on NDT, (ECNDT’06), Berlin, Germany, September 2006.
[100]
Zimdars, D.; White, J.S.; Stuk, G.; Chernovsky, A.; Fichter, G.; Williamson, S. Security and Non Destructive Evaluation Application of High Speed Time Domain Terahertz Imaging. Proceedings of theLasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference, (CLEO/QELS ’06), Long Beach, CA, USA, 21–26 May 2006.
[101]
Oyama, Y.; Zhen, L.; Tanabe, T.; Kagaya, M. Sub-terahertz imaging of defects in building blocks. NDT&E Int 2009, 42, 28–33.
[102]
Redo-Sanchez, A.; Kaur, G.; Zhang, X.C.; Buersgens, F.; Kersting, R. 2-D acoustic phase imaging with millimeter-wave radiation. IEEE Trans. Microwave Theory Tech 2009, 57, 589–593.
[103]
Bogue, R. Terahertz imaging: A report on progress. Sens. Rev 2009, 29, 6–12.
[104]
Jenks, W.G.; Sadeghi, S.S.H.; Wikswo, J.P., Jr. SQUIDs for nondestructive evaluation. J. Phys. D Appl. Phys 1997, 30, 293–323.
[105]
Tralshawala, N.; Claycomb, J.R.; Miller, J.H. Practical SQUID instrument for nondestructive testing. Appl. Phys. Lett 1997, 71, 1753–1575.
[106]
Krausea, H.J.; Kreutzbruck, M. Recent developments in SQUID NDE. Physica C: Superconductivity 2002, 368, 70–79.
[107]
Xu, Y.; He, B. Magnetoacoustic tomography with magnetic induction (MAT-MI). Phys. Med. Biol 2005, 50, 5175–5187.
[108]
Li, X.; Xu, Y.; He, B. Imaging electrical impedance from acoustic measurements by means of Magnetoacoustic Tomography with Magnetic Induction (MAT-MI). IEEE Trans. Biomed. Eng 2007, 54, 323–330.
[109]
Redo-Sanchez, A.; Kaur, G.; Zhang, X.C.; Buersgens, F.; Kersting, R. 2-D acoustic phase imaging with millimeter-wave radiation. IEEE Trans. Microwave Theory Tech 2009, 57, 589–593.
[110]
Deng, Y.; Golkowski, M. MIcrowave Induced Thermoacoustic Imaging: A Hybrid FDTD Model. Proceedings of The URSI National Conference, Boulder, USA, 5–10 January, 2011.
[111]
Dorn, O.; Berte-Aguirey, H.; Beryman, J.; Papniolaou, G. A Nonlinear Inversion Method for 3D Eletromagnetic Imaging Using Adjoint Fields. Technical Report;; Stanford University: Stanford, CA, USA, 1999.
[112]
Dorn, O.; Miller, E.L.; Rappaport, C.M. A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets. Inverse Probl 2000, 16, 1119–1156.
[113]
Lionheart, W.R. Reconstruction Algorithms for Permittivity and Conductivity Imaging. Technical Report;; The University of Manchester: Manchester, UK, 2001.
[114]
Polydorides, N. Image Reconstruction Algorithms for Soft Field TomographyPh.D. Thesis. University of Manchester, Manchester, UK, 2002.
[115]
Mook, G.; Michel, F.; Simonin, J. Electromagnetic Imaging using Probe Arrays. Proceedings of the 10th International Conference of The Slovenian Society for Non-Destructive Testing, Ljubljana, Slovenia, 1–3 September 2009.
[116]
Chaturvedi, P.; Plumb, R.G. Electromagnetic imaging of underground targets using constrained optimization. IEEE Trans. Geosci. Remote Sens 1995, 33, 551–561.
[117]
Azaro, R.; Bozza, G.; Estatico, C.; Massa, A.; Pastorino, M.; Pregnolato, D.; Randazzo, A. New Results on Electromagnetic Imaging Based on the Inversion of Measured Scattered-Field Data. Proceedings of the Instrumentation and Measurement Technology Conference, (IMTC’05), Ottawa, ON, Canada, 16–19 May 2005.
[118]
Dorn, O.; Lesselier, D. Level set methods for inverse scattering. Inverse Probl 2006, 22, R67–R131.
[119]
Ammari, H.; Iakovleva, E.; Lesselier, D.; Perrusson, G. Music-type electromagnetic imaging of a collection of small three-dimensional inclusions. SIAM J. Sci. Comput 2007, 29, 674–709.
[120]
Pastorino, M. Stochastic optimization methods applied to microwave imaging: A review. IEEE Trans. Antennas Propag 2007, 55, 538–548.
[121]
Simm, A.; Abidin, I.Z.; Tian, G.Y.; Woo, W.L. Simulation and Visualisation for Electromagnetic Nondestructive Evaluation. Proceedings of the 14th International Conference Information Visualisation, London, UK, 26–29 July 2010.