In this paper, the Selective Multiple Acknowledgement (SMA) method, based on Multiple Acknowledgement (MA), is proposed to efficiently reduce the amount of data transmission by redesigning the transmission frame structure and taking into consideration underwater transmission characteristics. The method is suited to integrated underwater system models, as the proposed method can handle the same amount of data in a much more compact frame structure without any appreciable loss of reliability. Herein, the performance of the proposed SMA method was analyzed and compared to those of the conventional Automatic Repeat-reQuest (ARQ), Block Acknowledgement (BA), block response, and MA methods. The efficiency of the underwater sensor network, which forms a large cluster and mostly contains uplink data, is expected to be improved by the proposed method.
References
[1]
Etter, P.C. Underwater Acoustic Modeling and Simulation, 3rd ed ed.; Spon Press: London, UK, 2003.
[2]
Shin, S.Y.; Park, S.H. SBMAC: Smart blocking MAC mechanism for variable UW-ASN (underwater acoustic sensor network) environment. Sensors 2010, 10, 501–525, doi:10.3390/s100100501. 22315553
[3]
Shin, S.Y.; Lee, S.J.; Park, S.H. MA: Multiple acknowledgement mechanism for UWSN-underwater sensor network. J. Korea Multimed. Soc 2009, 12, 1769–1777.
[4]
Alan, F.A.; Dario, P.; Tommaso, M. State-of-the Art in Protocol Research for Underwater Acoustic Sensor Networks. Proceedings of the 1st ACM International Workshop on Underwater Networks, WUWNet 06, Los Angeles, CA, USA, 25 September 2006; pp. 7–16.
[5]
Peng, X.; Chin, F.P.S.; Liang, Y.-C.; Motani, M. Performance of Hybrid ARQ Techniques Based on Turbo Codes for High-Speed Packet Transmission. Proceedings of the 2002 IEEE Seventh International Symposium on Spread Spectrum Techniques and Applications, Prague, Czech Republic, 2–5 September 2002; pp. 682–686.
[6]
Yao, Y.-D. Performance of ARQ and NAK-Based ARQ on a Correlated Fading Channel. Proceedings of the IEEE VTS 50th Vehicular Technology Conference VTC’99, Amsterdam, The Netherlands, 19–22 September 1999; 5, pp. 2706–2710.
[7]
Lu, D.-L.; Chang, J.-F. Analysis of ARQ protocols via signal flow graphs. IEEE Trans. Commun 1989, 37, 245–251.
[8]
Tinnirello, I.; Choi, S. Efficiency Analysis of Burst Transmissions with Block ACK in Contention-Based 802.11e WLANs. Proceedings of the 2005 IEEE International Conference on Communications, Seoul, Korea, 16–20 May 2005; 5, pp. 3455–3460.
[9]
IEEE Standard 802.11e-2005. In Amendment to IEEE Std 802.11, 1999 Edition, Reaff 2003; The Institute of Electrical and Electronics Engineers, Inc.: New York, NY, USA, 2005.
[10]
Jeong, Y.-J.; Shin, S.-Y.; Park, S.-H.; Kim, C.-H. PBA: A new MAC mechanism for efficient wireless communication in underwater acoustic sensor network. WSEAS Trans. Commun 2007, 6, 401–407.
[11]
Hong, T.P.; Wu, C.H. An improved weighted clustering algorithm for determination of application nodes in heterogeneous sensor networks. J. Inf. Hiding Multimed. Signal Process 2011, 2, 173–184.
[12]
Leroy, C.C.; Parthiot, F. Depth-pressure relationships in the oceans and seas. J. Acoust. Soc. Am 1998, 103, 1346–1352, doi:10.1121/1.421275.
[13]
Sayoud, H.; Ouamour, S. Speaker clustering of stereo audio documents based on sequential gathering process. J. Inf. Hiding Multimed. Signal Process 2010, 1, 344–360.
[14]
Lin, T.C.; Huang, H.C.; Liao, B.Y.; Pan, J.S. An optimized approach on applying genetic algorithm to adaptive cluster validity index. Int. J. Comput. Sci. Eng. Syst 2007, 1, 253–257.