全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

The Need and Potential of Biosensors to Detect Dioxins and Dioxin-Like Polychlorinated Biphenyls along the Milk, Eggs and Meat Food Chain

DOI: 10.3390/s111211692

Keywords: dioxins, biosensor, polychlorinated biphenyls, food chain

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs) are hazardous toxic, ubiquitous and persistent chemical compounds, which can enter the food chain and accumulate up to higher trophic levels. Their determination requires sophisticated methods, expensive facilities and instruments, well-trained personnel and expensive chemical reagents. Ideally, real-time monitoring using rapid detection methods should be applied to detect possible contamination along the food chain in order to prevent human exposure. Sensor technology may be promising in this respect. This review gives the state of the art for detecting possible contamination with dioxins and DL-PCBs along the food chain of animal-source foods. The main detection methods applied (i.e., high resolution gas-chromatography combined with high resolution mass-spectrometry (HRGC/HRMS) and the chemical activated luciferase gene expression method (CALUX bioassay)), each have their limitations. Biosensors for detecting dioxins and related compounds, although still under development, show potential to overcome these limitations. Immunosensors and biomimetic-based biosensors potentially offer increased selectivity and sensitivity for dioxin and DL-PCB detection, while whole cell-based biosensors present interpretable biological results. The main shortcoming of current biosensors, however, is their detection level: this may be insufficient as limits for dioxins and DL-PCBs for food and feedstuffs are in pg per gram level. In addition, these contaminants are normally present in fat, a difficult matrix for biosensor detection. Therefore, simple and efficient extraction and clean-up procedures are required which may enable biosensors to detect dioxins and DL-PCBs contamination along the food chain.

References

[1]  Kulkarni, P.S.; Crespo, J.G.; Afonso, C.A.M. Dioxins sources and current remediation technologies—A review. Environ. Int 2008, 34, 139–153.
[2]  Durand, B.; Dufour, B.; Fraisse, D.; Defour, S.; Duhem, K.; Le-Barillec, K. Levels of PCDDs, PCDFs and dioxin-like PCBs in raw cow’s milk collected in France in 2006. Chemosphere 2008, 70, 689–693.
[3]  Kulkarni, P.S.; Crespo, J.G.; Afonso, C.A.M.; Jerome, O.N. Dioxins. In Encyclopedia of Environmental Health; Elsevier: Burlington, VT, USA, 2011; pp. 83–92.
[4]  Schecter, A.; Birnbaum, L.; Ryan, J.J.; Constable, J.D. Dioxins: An overview. Environ. Res 2006, 101, 419–428.
[5]  Schecter, A.J.; Colacino, J.A.; Birnbaum, L.S.; Jerome, O.N. Dioxins: health effects. In Encyclopedia of Environmental Health; Elsevier: Burlington, VT, USA, 2011; pp. 93–101.
[6]  van den Berg, M.; Birnbaum, L.S.; Denison, M.; de Vito, M.; Farland, W.; Feeley, M.; Fiedler, H.; Hakansson, H.; Hanberg, A.; Haws, L.; Rose, M.; Safe, S.; Schrenk, D.; Tohyama, C.; Tritscher, A.; Tuomisto, J.; Tysklind, M.; Walker, N.; Peterson, R.E. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci 2006, 93, 223–241.
[7]  Ahmed, F.E. Analysis of polychlorinated biphenyls in food products. TrAC Trends Anal. Chem 2003, 22, 170–185.
[8]  Thomas, G.O.; Sven Erik, J.; Brian, F. Polychlorinated biphenyls. In Encyclopedia of Ecology; Academic Press: Oxford, UK, 2008; pp. 2872–2881.
[9]  Heres, L.; Hoogenboom, R.; Herbes, R.; Traag, W.; Urlings, B. Tracing and analytical results of the dioxin contamination incident in 2008 originating from the Republic of Ireland. Food Addit. Contam. Part A Chem 2010, 27, 1733–1744.
[10]  Kennedy, J.; Delaney, L.; Hudson, E.M.; McGloin, A.; Wall, P.G. Public perceptions of the dioxin incident in Irish pork. J. Risk Res 2010, 13, 937–949.
[11]  Kupferschmidt, K. Dioxin scandal triggers food debate in Germany. Can. Med. Assoc. J 2011, 183, E221–E222.
[12]  Alcoser, V.H.L.; Velthuis, A.G.J.; Hoogenboom, L.A.P.; van der Fels-Klerx, H.J. Financial impact of a dioxin incident in the dutch dairy chain. J. Food Prot 2011, 74, 967–979.
[13]  Reiner, E.J. The analysis of dioxins and related compounds. Mass Spectrom. Rev 2010, 29, 526–559.
[14]  Hoogenboom, L.; Goeyens, L.; Carbonnelle, S.; van Loco, J.; Beernaert, H.; Baeyens, W.; Traag, W.; Bovee, T.; Jacobs, G.; Schoeters, G. The CALUX bioassay: Current status of its application to screening food and feed. TrAC Trends Anal. Chem 2006, 25, 410–420.
[15]  Justino, C.I.L.; Rocha-Santos, T.A.; Duarte, A.C. Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC Trends Anal. Chem 2010, 29, 1172–1183.
[16]  Nien, P.-C.; Tung, T.-S.; Ho, K.-C. Amperometric glucose biosensor based on entrapment of glucose oxidase in a poly(3,4-ethylenedioxythiophene) film. Electroanalysis 2006, 18, 1408–1415.
[17]  Tan, X.; Capar, G.; Li, K. Analysis of dissolved oxygen removal in hollow fibre membrane modules: Effect of water vapour. J. Membr. Sci 2005, 251, 111–119.
[18]  Ponomareva, O.N.; Arlyapov, V.A.; Alferov, V.A.; Reshetilov, A.N. Microbial biosensors for detection of biological oxygen demand (a review). Appl. Biochem. Microbiol 2011, 47, 1–11.
[19]  Palchetti, I.; Mascini, M. Nucleic acid biosensors for environmental pollution monitoring. Analyst 2008, 133, 846–854.
[20]  Wanekaya, A.K.; Chen, W.; Mulchandani, A. Recent biosensing developments in environmental security. J. Environ. Monit 2008, 10, 703–712.
[21]  González-Martínez, M.; Puchades, R.; Maquieira, A. Optical immunosensors for environmental monitoring: How far have we come? Anal. Bioanal. Chem 2007, 387, 205–218.
[22]  K?rkk?inen, R.M.; Drasbek, M.R.; McDowall, I.; Smith, C.J.; Young, N.W.G.; Bonwick, G.A. Aptamers for safety and quality assurance in the food industry: Detection of pathogens. Int. J. Food Sci. Technol 2011, 46, 445–454.
[23]  Nugen, S.R.; Baeumner, A.J. Trends and opportunities in food pathogen detection. Anal. Bioanal. Chem 2008, 391, 451–454.
[24]  Petz, M. Recent applications of surface plasmon resonance biosensors for analyzing residues and contaminants in food. Monatshefte Chem 2009, 140, 953–964.
[25]  Eijkelkamp, J.; Aarts, H.; Fels-Klerx, H. Suitability of rapid detection methods for salmonella in poultry slaughterhouses. Food Anal. Methods 2009, 2, 1–13.
[26]  Ahlborg, U.G.; Becking, G.C.; Birnbaum, L.S.; Brouwer, A.; Derks, H.; Feeley, M.; Golor, G.; Hanberg, A.; Larsen, J.C.; Liem, A.K.D.; Safe, S.H.; Schlatter, C.; Waern, F.; Younes, M.; Yrj?nheikki, E. Toxic equivalency factors for dioxin-like PCBs: Report on WHO-ECEH and IPCS consultation, December 1993. Chemosphere 1994, 28, 1049–1067.
[27]  van den Berg, M.; de Jongh, J.; Poiger, H.; Olson, J.R. The toxicokinetics and metabolism of polychlorinated dibenzo-p-dioxins (PCDDS) and dibenzofurans (PCDFS) and their relevance for toxicity. Crit. Rev. Toxicol 1994, 24, 1–74.
[28]  NRC Health Risks from Dioxin and Related Compound: Evaluation of the EPA Reassessment, Available online: http://www.ejnet.org/dioxin/nas2006.pdf (accessed on 17 October 2011).
[29]  Safe, S.H. Comparative toxicology and mechanism of action of polychlorinated dibenzo-p-dioxins and dibenzofurans. Annu. Rev. Pharmacol. Toxicol 1986, 26, 371–399.
[30]  Marinkovic, N.; Pasalic, D.; Ferencak, G.; Grskovic, B.; Rukavina, A.S. Dioxins and human toxicity. Arh. Hig. Rada Toksikol 2010, 61, 445–453.
[31]  Foster, W.G.; Maharaj-Briceno, S.; Cyr, D.G. Dioxin-induced changes in epididymal sperm count and spermatogenesis. Cienc. Saude Coletiva 2011, 16, 2893–2905.
[32]  Balabani?, D.; Rupnik, M.; Klemen?i?, A.K. Negative impact of endocrine-disrupting compounds on human reproductive health. Reprod. Fertil. Dev 2011, 23, 403–416.
[33]  Longnecker, M.P.; Rogan, W.J.; Lucier, G. The human health effects of DDT (dichlorodiphenyl-trichloroethane) and PCBS (polychlorinated biphenyls) and an overview of organochlorines in public health. Annu. Rev. Public Health 1997, 18, 211–244.
[34]  Okey, A.B. Special contribution—An aryl hydrocarbon receptor odyssey to the shores of toxicology: The deichmann lecture, international congress of toxicology-XI. Toxicol. Sci 2007, 98, 5–38.
[35]  de Waard, W.J.; Aarts, J.M.M.J.G.; Peijnenburg, A.C.M.; de Kok, T.M.C.M.; van Schooten, F.J.; Hoogenboom, L.A.P. Ah receptor agonist activity in frequently consumed food items. Food Addit. Contam. Part A 2008, 25, 779–787.
[36]  van der Heiden, E.; Bechoux, N.; Muller, M.; Sergent, T.; Schneider, Y.-J.; Larondelle, Y.; Maghuin-Rogister, G.; Scippo, M.-L. Food flavonoid aryl hydrocarbon receptor-mediated agonistic/antagonistic/synergic activities in human and rat reporter gene assays. Anal. Chim. Acta 2009, 637, 337–345.
[37]  Zhang, S.; Qin, C.; Safe, S.H. Flavonoids as aryl hydrocarbon receptor agonists/antagonists: Effects of structure and cell context. Environ. Health Perspect 2003, 111, 1877–1882.
[38]  Denison, M.S.; Pandini, A.; Nagy, S.R.; Baldwin, E.P.; Bonati, L. Ligand binding and activation of the Ah receptor. Chem. Biol. Interact 2002, 141, 3–24.
[39]  Bohonowych, J.E.; Denison, M.S. Persistent binding of ligands to the aryl hydrocarbon receptor. Toxicol. Sci 2007, 98, 99–109.
[40]  de Mul, A.; Bakker, M.I.; Zeilmaker, M.J.; Traag, W.A.; van Leeuwen, S.P.J.; Hoogenboom, R.; Boon, P.E.; van Klaveren, J.D. Dietary exposure to dioxins and dioxin-like PCBs in The Netherlands anno 2004. Regul. Toxicol. Pharmacol 2008, 51, 278–287.
[41]  Franzblau, A.; Hedgeman, E.; Jolliet, O.; Knutson, K.; Towey, T.; Chen, Q.; Hong, B.; Adriaens, P.; Demond, A.; Garabrant, D.H.; Gillespie, B.W.; Lepkowski, J. Case report: The University of Michigan dioxin exposure study: A follow-up investigation of a case with high serum concentration of 2,3,4,7,8-pentachlorodibenzofuran. Environ. Health Perspect 2010, 118, 1313–1317.
[42]  Commission regulation (EC) No 1881/2006 of 19 December setting maximum levels for certain contaminants in foodstuffs. OJEC 2006, L364, 5–24.
[43]  Sorg, O.; Zennegg, M.; Schmid, P.; Fedosyuk, R.; Valikhnovskyi, R.; Gaide, O.; Kniazevych, V.; Saurat, J.H. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) poisoning in Victor Yushchenko: Identification and measurement of TCDD metabolites. Lancet 2009, 374, 1179–1185.
[44]  Hakk, H.; Diliberto, J.J.; Birnbaum, L.S. The effect of dose on 2,3,7,8-TCDD tissue distribution, metabolism and elimination in CYP1A2 (?/?) knockout and C57BL/6N parental strains of mice. Toxicol. Appl. Pharmacol 2009, 241, 119–126.
[45]  Geyer, H.J.; Schramm, K.-W.; Anton Feicht, E.; Behechti, A.; Steinberg, C.; Brüggemann, R.; Poiger, H.; Henkelmann, B.; Kettrup, A. Half-lives of tetra-, penta-, hexa-, hepta-, and octachlorodibenzo-p-dioxin in rats, monkeys, and humans—A critical review. Chemosphere 2002, 48, 631–644.
[46]  Jackson, J.A.; Birnbaum, L.S.; Diliberto, J.J. Effects of age, sex, and pharmacologic agents on the biliary elimination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in F344 rats. Drug Metab. Dispos 1998, 26, 714–719.
[47]  Fries, G.F.; Paustenbach, D.J.; Mather, D.B.; Luksemburg, W.J. A congener specific evaluation of transfer of chlorinated dibenzo-p-dioxins and dibenzofurans to milk of cows following ingestion of pentachlorophenol-treated wood. Environ. Sci. Technol 1999, 33, 1165–1170.
[48]  Adekunte, A.O.; Tiwari, B.K.; O’Donnell, C.P. Exposure assessment of dioxins and dioxin-like PCBs in pasteurised bovine milk using probabilistic modelling. Chemosphere 2010, 81, 509–516.
[49]  Hoogenboom, L.A.P.; Kan, C.A.; Zeilmaker, M.J.; van Eijkeren, J.; Traag, W.A. Carry-over of dioxins and PCBs from feed and soil to eggs at low contamination levels—Influence of mycotoxin binders on the carry-over from feed to eggs. Food Addit. Contam 2006, 23, 518–527.
[50]  Kijlstra, A.; Meerburg, B.G.; Bos, A.P. Food safety in free-range and organic livestock systems: Risk management and responsibility. J. Food Prot 2009, 72, 2629–2637.
[51]  de Vries, M.; Kwakkel, R.P.; Kijlstra, A. Dioxins in organic eggs: A review. NJAS-Wagen. J. Life Sci 2006, 54, 207–221.
[52]  Holt, P.S.; Davies, R.H.; Dewulf, J.; Gast, R.K.; Huwe, J.K.; Jones, D.R.; Waltman, D.; Willian, K.R. The impact of different housing systems on egg safety and quality. Poult. Sci 2011, 90, 251–262.
[53]  Kijlstra, A.; Traag, W.A.; Hoogenboom, L.A.P. Effect of flock size on dioxin levels in eggs from chickens kept outside. Poult. Sci 2007, 86, 2042–2048.
[54]  Rychen, G.; Jurjanz, S.; Toussaint, H.; Feidt, C. Dairy ruminant exposure to persistent organic pollutants and excretion to milk. Animal 2008, 2, 312–323.
[55]  Schoeters, G.; Hoogenboom, R. Contamination of free-range chicken eggs with dioxins and dioxin-like polychlorinated biphenyls. Mol. Nutr. Food Res 2006, 50, 908–914.
[56]  van Overmeire, I.; Pussemier, L.; Hanot, V.; de Temmerman, L.; Hoenig, M.; Goeyens, L. Chemical contamination of free-range eggs from Belgium. Food Addit. Contam 2006, 23, 1109–1122.
[57]  Schwind, K.H.; Danicke, S.; Jira, W. Survey of dioxins, dioxin-like PCBs and marker PCBs in German feeds of plant origin. J. Verbrauch. Lebensm 2010, 5, 413–420.
[58]  Boxall, A.B.A.; Hardy, A.; Beulke, S.; Boucard, T.; Burgin, L.; Falloon, P.D.; Haygarth, P.M.; Hutchinson, T.; Kovats, R.S.; Leonardi, G.; Levy, L.S.; Nichols, G.; Parsons, S.A.; Potts, L.; Stone, D.; Topp, E.; Turley, D.B.; Walsh, K.; Wellington, E.M.H.; Williams, R.J. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environ. Health Perspect 2009, 117, 508–514.
[59]  Thomson, B.; Rose, M. Environmental contaminants in foods and feeds in the light of climate change. Qual. Assur. Saf. Crop. Foods 2011, 3, 2–11.
[60]  Kim, E.J.; Oh, J.E.; Chang, Y.S. Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil. Sci. Total Environ 2003, 311, 177–189.
[61]  Black, R.R.; Meyer, C.P.; Touati, A.; Gullett, B.K.; Fiedler, H.; Mueller, J.F. Emissions of PCDD and PCDF from combustion of forest fuels and sugarcane: A comparison between field measurements and simulations in a laboratory burn facility. Chemosphere 2011, 83, 1331–1338.
[62]  Hsu, J.F.; Guo, H.R.; Wang, H.W.; Liao, C.K.; Liao, P.C. An occupational exposure assessment of polychlorinated dibenzo-p-dioxin and dibenzofurans in firefighters. Chemosphere 2011, 83, 1353–1359.
[63]  Gullett, B.; Touati, A.; Oudejans, L. PCDD/F and aromatic emissions from simulated forest and grassland fires. Atmos. Environ 2008, 42, 7997–8006.
[64]  Estrellan, C.R.; Iino, F. Toxic emissions from open burning. Chemosphere 2010, 80, 193–207.
[65]  Vassiliadou, I.; Papadopoulos, A.; Costopoulou, D.; Vasiliadou, S.; Christoforou, S.; Leondiadis, L. Dioxin contamination after an accidental fire in the municipal landfill of Tagarades, Thessaloniki, Greece. Chemosphere 2009, 74, 879–884.
[66]  Oh, J.E.; Choi, S.D.; Lee, S.J.; Chang, Y.S. Influence of a municipal solid waste incinerator on ambient air and soil PCDD/Fs levels. Chemosphere 2006, 64, 579–587.
[67]  Menotta, S.; D’Antonio, M.; Diegoli, G.; Montella, L.; Raccanelli, S.; Fedrizzi, G. Depletion study of PCDD/Fs and dioxin-like PCBs concentrations in contaminated home-produced eggs: Preliminary study. Anal. Chim. Acta 2010, 672, 50–54.
[68]  Sapkota, A.R.; Lefferts, L.Y.; McKenzie, S.; Walker, P. What do we feed to food-production animals? A review of animal feed ingredients and their potential impacts on human health. Environ. Health Perspect 2007, 115, 663–670.
[69]  Hoogenboom, R.; Zeilmaker, M.; van Eijkeren, J.; Kan, K.; Mengelers, M.; Luykx, D.; Traag, W. Kaolinic clay derived PCDD/Fs in the feed chain from a sorting process for potatoes. Chemosphere 2010, 78, 99–105.
[70]  Turrio-Baldassarri, L.; Alivernini, S.; Carasi, S.; Casella, M.; Fuselli, S.; Iacovella, N.; Iamiceli, A.L.; La Rocca, C.; Scarcella, C.; Battistelli, C.L. PCB, PCDD and PCDF contamination of food of animal origin as the effect of soil pollution and the cause of human exposure in Brescia. Chemosphere 2009, 76, 278–285.
[71]  Perry, T.W.; Everson, R.J.; Hendrix, K.S.; Peterson, R.C.; Weinland, K.M.; Robinson, F.R. Dietary Aroclor 1254 in the milk fat of lactating beef cattle. J. Diary Sci 1981, 64, 2262–2265.
[72]  Brambilla, G.; Fochi, I.; Falce, M.; de Filippis, S.P.; Ubaldi, A.; di Domenico, A. PCDD and PCDF depletion in milk from dairy cows according to the herd metabolic scenario. Chemosphere 2008, 73, S216–S219.
[73]  Hsu, J.F.; Chen, C.; Liao, P.C. Elevated PCDD/F levels and distinctive PCDD/F congener profiles in free range eggs. J. Agric. Food Chem 2010, 58, 7708–7714.
[74]  van Overmeire, I.; Pussemier, L.; Waegeneers, N.; Hanot, V.; Windal, I.; Boxus, L.; Covaci, A.; Eppe, G.; Scippo, M.L.; Sioen, I.; Bilau, M.; Gellynck, X.; de Steur, H.; Tangni, E.K.; Goeyens, L. Assessment of the chemical contamination in home-produced eggs in Belgium: General overview of the CONTEGG study. Sci. Total Environ 2009, 407, 4403–4410.
[75]  van Overmeire, I.; Waegeneers, N.; Sioen, I.; Bilau, M.; de Henauw, S.; Goeyens, L.; Pussemier, L.; Eppe, G. PCDD/Fs and dioxin-like PCBs in home-produced eggs from Belgium: Levels, contamination sources and health risks. Sci. Total Environ 2009, 407, 4419–4429.
[76]  Asari, M.; Takatsuki, H.; Yamazaki, M.; Azuma, T.; Takigami, H.; Sakai, S. Waste wood recycling as animal bedding and development of bio-monitoring tool using the CALUX assay. Environ. Int 2004, 30, 639–649.
[77]  Brambilla, G.; Fochi, I.; de Filippis, S.P.; Iacovella, N.; di Domenico, A. Pentachlorophenol, polychlorodibenzodioxin and polychlorodibenzofuran in eggs from hens exposed to contaminated wood shavings. Food Addit. Contam. Part A Chem 2009, 26, 258–264.
[78]  Fries, G.F.; Feil, V.J.; Zaylskie, R.G.; Bialek, K.M.; Rice, C.P. Treated wood in livestock facilities: Relationships among residues of pentachlorophenol, dioxins, and furans in wood and beef. Environ. Pollut 2002, 116, 301–307.
[79]  Fernandes, A.R.; Foxall, C.; Lovett, A.; Rose, M.; Dowding, A. The assimilation of dioxins and PCBs in conventionally reared farm animals: Occurrence and biotransfer factors. Chemosphere 2011, 83, 815–822.
[80]  Huwe, J.; Pagan-Rodriguez, D.; Abdelmajid, N.; Clinch, N.; Gordon, D.; Holterman, J.; Zaki, E.; Lorentzsen, M.; Dearfield, K. Survey of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and non-ortho-polychlorinated biphenyls in US meat and poultry, 2007–2008: Effect of new toxic equivalency factors on toxic equivalency levels, patterns, and temporal trends. J. Agric. Food Chem 2009, 57, 11194–11200.
[81]  Hess, H.D.; Geinoz, M. A farm survey on the presence of dioxins and dl-PCB in beef production systems in Switzerland. Biotechnol. Agron. Soc. Environ 2011, 15, 31–37.
[82]  Brambilla, G.; de Filippis, S.P.; Iamiceli, A.L.; Iacovella, N.; Abate, V.; Aronica, V.; di Marco, V.; di Domenico, A. Bioaccumulation of dioxin-like substances and selected brominated flame retardant congeners in the fat and livers of black pigs farmed within the Nebrodi Regional Park of Sicily. J. Food Prot 2011, 74, 261–269.
[83]  Dujardin, M.; Narbonne, J.F.; Alexander, S. The Belgian dioxin crisis. Biomed. Res 2000, 21, 337–343.
[84]  Kim, M.; Kim, D.G.; Choi, S.W.; Guerrero, P.; Norambuena, J.; Chung, G.S. Formation of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) from a refinery process for zinc oxide used in feed additives: A source of dioxin contamination in Chilean pork. Chemosphere 2011, 82, 1225–1229.
[85]  Hoogenboom, R.; Bovee, T.; Portier, L.; Bor, G.; van der Weg, G.; Onstenk, C.; Traag, W. The German bakery waste incident; Use of a combined approach of screening and confirmation for dioxins in feed and food. Talanta 2004, 63, 1249–1253.
[86]  Furst, P. Dioxins in feed and food again—Real or perceived risk? Eur. J. Lipid Sci. Technol 2011, 113, 401–402.
[87]  European Union acts on dioxin contamination of food. TrAC Trends Anal. Chem 2011, 30, V–VI.
[88]  Spitaler, M.; Iben, C.; Tausch, H. Dioxin residues in the edible tissue of finishing pigs after dioxin feeding. J. Anim. Physiol. Anim. Nutr 2005, 89, 65–71.
[89]  Hoogenboom, L.A.P.; Kan, C.A.; Bovee, T.F.H.; van der Weg, G.; Onstenk, C.; Traag, W.A. Residues of dioxins and PCBs in fat of growing pigs and broilers fed contaminated feed. Chemosphere 2004, 57, 35–42.
[90]  United Staates of Environmental Protection Agency (EPA). Method 1613, Revision B, Tetra-through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS. 821-B-94-005Q;; US EPA: Washington, DC, USA, 1994.
[91]  Reiner, E.J.; Clement, R.E.; Okey, A.B.; Marvin, C.H. Advances in analytical techniques for polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and dioxin-like PCBs. Anal. Bioanal. Chem 2006, 386, 791–806.
[92]  Zabelina, O.N.; Saloutin, V.I.; Chupakhin, O.N. Analysis of polychlorinated biphenyl mixtures by gas chromatography. J. Anal. Chem 2010, 65, 1098–1108.
[93]  Wang, B.; Yu, G.; Zhang, T.T.; Huang, J.; Wang, T.; Nakamura, M.; Handa, H.; Huang, C.C.; Murata, H. CALUX bioassay of dioxin-like compounds in sediments from the Haihe river, China. Soil. Sediment. Contam 2009, 18, 397–411.
[94]  Safe, S.; Wormke, M. Inhibitory aryl hydrocarbon receptor—estrogen receptor α cross-talk and mechanisms of action. Chem. Res. Toxicol 2003, 16, 807–816.
[95]  Kennedy, S.W.; Lorenzen, A.; James, C.A.; Collins, B.T. Ethoxyresorufin-O-deethylase and porphyrin analysis in chicken embryo hepatocyte cultures with a fluorescence multiwell plate reader. Anal. Biochem 1993, 211, 102–112.
[96]  Garrison, P.M.; Tullis, K.; Aarts, J.M.M.J.G.; Brouwer, A.; Giesy, J.P.; Denison, M.S. Species-specific recombinant cell lines as bioassay systems for the detection of 2,3,7,8-tetrachlorodibenzo-p-dioxin-like chemicals. Fundam. Appl. Toxicol 1996, 30, 194–203.
[97]  Gizzi, G.; Hoogenboom, L.A.P.; von Holst, C.; Rose, M.; Anklam, E. Determination of dioxins (PCDDs/PCDFs) and PCBs in food and feed using the DR CALUX (R) bioassay: Results of an international validation study. Food Addit. Contam 2005, 22, 472–481.
[98]  Hoogenboom, R.; Bovee, T.; Traag, W.; Hoogerbrugge, R.; Baumann, B.; Portier, L.; van de Weg, G.; de Vries, J. The use of the DR CALUX (R) bioassay and indicator polychlorinated biphenyls for screening of elevated levels of dioxins and dioxin-like polychlorinated biphenyls in eel. Mol. Nutr. Food Res 2006, 50, 945–957.
[99]  van Leeuwen, S.P.J.; Leonards, P.E.G.; Traag, W.A.; Hoogenboom, L.A.P.; de Boer, J. Polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls in fish from the Netherlands: Concentrations, profiles and comparison with DR CALUX (R) bioassay results. Anal. Bioanal. Chem 2007, 389, 321–333.
[100]  Bovee, T.F.H.; Hoogenboom, L.A.P.; Hamers, A.R.M.; Traag, W.A.; Zuidema, T.; Aarts, J.; Brouwer, A.; Kuiper, H.A. Validation and use of the CALUX-bioassay for the determination of dioxins and PCBs in bovine milk. Food Addit. Contam 1998, 15, 863–875.
[101]  Malisch, R. Increase of the PCDD/F-contamination of milk, butter and meat samples by use of contaminated citrus pulp. Chemosphere 2000, 40, 1041–1053.
[102]  Bernard, A.; Hermans, C.; Broeckaert, F.; de Poorter, G.; de Cock, A.; Houins, G. Food contamination by PCBs and dioxins. Nature 1999, 401, 231–232.
[103]  Baston, D.S.; Denison, M.S. Considerations for potency equivalent calculations in the Ah receptor-based CALUX bioassay: Normalization of superinduction results for improved sample potency estimation. Talanta 2011, 83, 1415–1421.
[104]  Amakura, Y.; Tsutsumi, T.; Nakamura, M.; Handa, H.; Yoshimura, M.; Matsuda, R.; Yoshida, T. Aryl hydrocarbon receptor ligand activity of commercial health foods. Food Chem 2011, 126, 1515–1520.
[105]  Windal, I.; Denison, M.S.; Birnbaum, L.S.; van Wouwe, N.; Baeyens, W.; Goeyens, L. Chemically activated luciferase gene expression (CALUX) cell bioassay analysis for the estimation of dioxin-like activity: Critical parameters of the CALUX procedure that impact assay results. Environ. Sci. Technol 2005, 39, 7357–7364.
[106]  Jeong, S.H.; Cho, J.H.; Park, J.M.; Denison, M.S. Rapid bioassay for the determination of dioxins and dioxin-like PCDFs and PCBs in meat and animal feeds. J. Anal. Toxicol 2005, 29, 156–162.
[107]  Chao, H.R.; Wang, Y.F.; Lin, D.Y.; Cheng, Y.T.; Tsou, T.C. Fast cleanup system combined with a dioxin-responsive element-driven luciferase bioassay for analysis of polychlorinated dibenzo-p-dioxins/furans in sediments and soils. Bull. Environ. Contam. Toxicol 2011, 86, 278–282.
[108]  Stypula-Trebas, S.; Piskorska-Pliszczynska, J. Comparison of extraction and cleanup procedures for the determination of PCDD/Ffs in feed samples with the calux bioassay. Bull. Vet. Inst. Pulawy 2010, 54, 549–555.
[109]  Zhao, B.; Baston, D.S.; Khan, E.; Sorrentino, C.; Denison, M.S. Enhancing the response of CALUX and CAFLUX cell bioassays for quantitative detection of dioxin-like compounds. Sci. China Chem 2010, 53, 1010–1016.
[110]  Sato, M.; Takigami, H.; Hayakawa, K.; Sakai, S. Water-quality monitoring technique for dioxins during dredging using on-site solid phase extraction with graphitic carbon and analysis with DR-CALUX. J. Environ. Sci. Health Part A Toxichazard. Subst. Environ. Eng 2010, 45, 867–874.
[111]  Wei, Y.; Kong, L.T.; Yang, R.; Wang, L.; Liu, J.H.; Huang, X.J. Electrochemical impedance determination of polychlorinated biphenyl using a pyrenecyclodextrin-decorated single-walled carbon nanotube hybrid. Chem. Commun 2011, 47, 5340–5342.
[112]  Fagan, S.B.; Santos, E.J.G.; Souza, A.G.; Mendes, J.; Fazzio, A. Ab initio study of 2,3,7,8-tetrachlorinated dibenzo-p-dioxin adsorption on single wall carbon nanotubes. Chem. Phys. Lett 2007, 437, 79–82.
[113]  Abalde-Cela, S.; Ho, S.; Rodríguez-González, B.; Correa-Duarte, M.A.; álvarez-Puebla, R.A.; Liz-Marzán, L.M.; Kotov, N.A. Loading of exponentially grown LBL films with silver nanoparticles and their application to generalized SERS detection. Angew. Chem 2009, 121, 5430–5433.
[114]  Yang, Y.; Meng, G. Ag dendritic nanostructures for rapid detection of polychlorinated biphenyls based on surface-enhanced Raman scattering effect. J. Appl. Phys 2010, 107, 044315:1–044315:5.
[115]  Bantz, K.C.; Haynes, C.L. Surface-enhanced Raman scattering detection and discrimination of polychlorinated biphenyls. Vib. Spectrosc 2009, 50, 29–35.
[116]  Huang, Z.; Meng, G.; Huang, Q.; Yang, Y.; Zhu, C.; Tang, C. Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering. Adv. Mater 2010, 22, 4136–4139.
[117]  Zhu, C.; Meng, G.; Huang, Q.; Huang, Z.; Chu, Z. Au hierarchical micro/nanotower arrays and their improved SERS effect by Ag nanoparticle decoration. Cryst. Growth Des 2011, 11, 748–752.
[118]  Zhu, C.; Meng, G.; Huang, Q.; Zhang, Z.; Xu, Q.; Liu, G.; Huang, Z.; Chu, Z. Ag nanosheet-assembled micro-hemispheres as effective SERS substrates. Chem. Commun 2011, 47, 2709–2711.
[119]  Zhu, C.; Meng, G.; Huang, Q.; Huang, Z. Vertically aligned Ag nanoplate-assembled film as a sensitive and reproducible SERS substrate for the detection of PCB-77. J. Hazard. Mater 2011. in press.
[120]  Wang, M.; Meng, G.; Huang, Q.; Li, M.; Li, Z.; Tang, C. Fluorescence detection of trace PCB101 based on PITC immobilized on porous AAO membrane. Analyst 2011, 136, 278–281.
[121]  Li, M.; Meng, G.; Huang, Q.; Yin, Z.; Wu, M.; Zhang, Z.; Kong, M. Prototype of a porous ZnO SPV-based sensor for PCB detection at room temperature under visible light illumination. Langmuir 2010, 26, 13703–13706.
[122]  Jin, Z.; Meng, F.; Liu, J.; Li, M.; Kong, L.; Liu, J. A novel porous anodic alumina based capacitive sensor towards trace detection of PCBs. Sens. Actuat. B Chem 2011, 157, 641–646.
[123]  Farre, M.; Perez, S.; Goncalves, C.; Alpendurada, M.F.; Barcelo, D. Green analytical chemistry in the determination of organic pollutants in the aquatic environment. TrAC Trends Anal. Chem 2010, 29, 1347–1362.
[124]  Rebe Raz, S.; Haasnoot, W. Multiplex bioanalytical methods for food and environmental monitoring. TrAC Trends Anal. Chem 2011, 30, 1526–1537.
[125]  Thevenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron 2001, 16, 121–131.
[126]  Velusamy, V.; Arshak, K.; Korostynska, O.; Oliwa, K.; Adley, C. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv 2010, 28, 232–254.
[127]  Rogers, K.R. Recent advances in biosensor techniques for environmental monitoring. Anal. Chim. Acta 2006, 568, 222–231.
[128]  Laschi, S.; Mascini, M.; Scortichini, G.; Fránek, M.; Mascini, M. Polychlorinated biphenyls (PCBs) detection in food samples using an electrochemical immunosensor. J. Agric. Food Chem 2003, 51, 1816–1822.
[129]  Centi, S.; Silva, E.; Laschi, S.; Palchetti, I.; Mascini, M. Polychlorinated biphenyls (PCBs) detection in milk samples by an electrochemical magneto-immunosensor (EMI) coupled to solid-phase extraction (SPE) and disposable low-density arrays. Anal. Chim. Acta 2007, 594, 9–16.
[130]  Silva, E.; Mascini, M.; Centi, S.; Turner, A.P.F. Detection of polychlorinated biphenyls (PCBs) in milk using a disposable immunomagnetic electrochemical sensor. Anal. Lett 2007, 40, 1371–1385.
[131]  Kurosawa, S.; Aizawa, H.; Park, J.W. Quartz crystal microbalance immunosensor for highly sensitive 2,3,7,8-tetrachlorodibenzo-p-dioxin detection in fly ash from municipal solid waste incinerators. Analyst 2005, 130, 1495–1501.
[132]  Su, L.A.; Jia, W.Z.; Hou, C.J.; Lei, Y. Microbial biosensors: A review. Biosens. Bioelectron 2011, 26, 1788–1799.
[133]  Lei, Y.; Mulchandani, P.; Chen, W.; Mulchandani, A. Biosensor for direct determination of fenitrothion and EPN using recombinant Pseudomonas putida JS444 with surface-expressed organophosphorous hydrolase. 2. Modified carbon paste electrode. Appl. Biochem. Biotechnol 2007, 136, 243–250.
[134]  Gavlasova, P.; Kuncova, G.; Kochankova, L.; Mackova, M. Whole cell biosensor for polychlorinated biphenyl analysis based on optical detection. Int. Biodeterior. Biodegrad 2008, 62, 304–312.
[135]  Inuyama, Y.; Nakamura, C.; Oka, T.; Yoneda, Y.; Obataya, I.; Santo, N.; Miyake, J. Simple and high-sensitivity detection of dioxin using dioxin-binding pentapeptide. Biosens. Bioelectron 2007, 22, 2093–2099.
[136]  Mascini, M.; Macagnano, A.; Monti, D.; del Carlo, M.; Paolesse, R.; Chen, B.; Warner, P.; D’Amico, A.; di Natale, C.; Compagnone, D. Piezoelectric sensors for dioxins: A biomimetic approach. Biosens. Bioelectron 2004, 20, 1203–1210.
[137]  Kim, M.; Kim, S.; Yun, S.J.; Kwon, J.W.; Son, S.W. Evaluation of PCDD/Fs characterization in animal feed and feed additives. Chemosphere 2007, 69, 381–386.
[138]  Mollenhorst, H.; Berentsen, P.B.M.; de Boer, I.J.M. On-farm quantification of sustainability indicators: An application to egg production systems. Br. Poult. Sci 2006, 47, 405–417.
[139]  Scott, D.; Dikici, E.; Ensor, M.; Daunert, S. Bioluminescence and its impact on bioanalysis. Annu. Rev. Anal. Chem 2011, 4, 297–319.
[140]  Sanvicens, N.; Mannelli, I.; Salvador, J.P.; Valera, E.; Marco, M.P. Biosensors for pharmaceuticals based on novel technology. TrAC Trends Anal. Chem 2011, 30, 541–553.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133