全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Evaluation of a Change Detection Methodology by Means of?Binary Thresholding Algorithms and Informational Fusion?Processes

DOI: 10.3390/s120303528

Full-Text   Cite this paper   Add to My Lib

Abstract:

Landcover is subject to continuous changes on a wide variety of temporal and spatial scales. Those changes produce significant effects in human and natural activities. Maintaining an updated spatial database with the occurred changes allows a better monitoring of the Earth’s resources and management of the environment. Change detection (CD) techniques using images from different sensors, such as satellite imagery, aerial photographs, etc., have proven to be suitable and secure data sources from which updated information can be extracted efficiently, so that changes can also be inventoried and monitored. In this paper, a multisource CD methodology for multiresolution datasets is applied. First, different change indices are processed, then different thresholding algorithms for change/no_change are applied to these indices in order to better estimate the statistical parameters of these categories, finally the indices are integrated into a change detection multisource fusion process, which allows generating a single CD result from several combination of indices. This methodology has been applied to datasets with different spectral and spatial resolution properties. Then, the obtained results are evaluated by means of a quality control analysis, as well as with complementary graphical representations. The suggested methodology has also been proved efficiently for identifying the change detection index with the higher contribution.

References

[1]  Locatelli, B.; Loisel, C. Changement climatique: La vérité est-elle au fond du puits? Une analyse des controverses sur les puits de carbone. Nat. Sci. Soc 2002, 10, 7–19.
[2]  Kastner, T.; Erb, K.; Nonhebel, S. International wood trade and forest change: A global analysis. Glob. Environ. Change 2011, 21, 947–956, doi:10.1016/j.gloenvcha.2011.05.003.
[3]  Aach, T.; Kaup, A. Bayesian algorithms for adaptive change detection in image sequences using Markov random fields. Signal Process Image Commun 1995, 2, 147–160.
[4]  Bruzzone, L.; Prieto, D.F. Automatic Analysis of the difference image for unsupervised change detection. IEEE Trans. Geosci. Remote Sens 2000, 38, 1171–1182, doi:10.1109/36.843009.
[5]  Bruzzone, L.; Prieto, D.F. An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images. IEEE Trans. Image Process 2002, 11, 452–466, doi:10.1109/TIP.2002.999678. 18244646
[6]  Radke, R.J.; Andra, S.; Al-Kofahi, O.; Roysam, B. Image change detection algorithms: A systematic survey. IEEE Trans. Image Process 2005, 3, 294–307.
[7]  Metternicht, G. Change detection assessment using fuzzy sets and remotely sensed data: An application of topographic map revision. ISPRS J. Photogramm. Remote Sens 1999, 54, 221–233, doi:10.1016/S0924-2716(99)00023-4.
[8]  Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens 2004, 25, 2365–2401, doi:10.1080/0143116031000139863.
[9]  Bujor, F.; Trouvé, E.; Valet, E.; Nicolas, J.M.; Rudant, J. Application of log-cummulants to the detection of spatiotemporal discontinuities in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens 2004, 42, 2073–2084, doi:10.1109/TGRS.2004.835304.
[10]  Inglada, J.; Giros, A. On the possibility of automatic multisensor image registration. IEEE Trans. Geosci. Remote Sens 2004, 45, 2104–2120.
[11]  Sjahputera, O.; Davis, C.H.; Claywell, B.C.; Hudson, N.J.; Keller, J.M.; Vincent, M.G.; Li, Y.; Klaric, M.N.; Shyu, C.-R. GeoCDX: An automated change detection & exploitation system for high resolution satellite imagery. Proceedings of the 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008.
[12]  Le Hegarat-Mascle, S.; Seltz, R.; Hubert-Moy, L.; Corgne, S.; Stach, N. Performance of change detection using remotely sensed data and evidential fusion: Comparison of three cases of application. Int. J. Remote Sens 2006, 27, 3515–3532, doi:10.1080/01431160500300255.
[13]  Rosin, P.L. Unimodal thresholding. Pat. Recognit 2001, 34, 2083–2096, doi:10.1016/S0031-3203(00)00136-9.
[14]  Sezgin, M.; Sankur, B. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 2004, 13, 146–168, doi:10.1117/1.1631315.
[15]  Melgani, F.; Moser, G.; Serpico, S.B. Unsupervised change-detection methods for remote-sensing images. Opt. Eng 2002, 41, 3288–3297, doi:10.1117/1.1518995.
[16]  Moser, G.; Serpico, S.B. Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery. IEEE Trans. Geosci. Remote Sens 2006, 44, 2972–2982, doi:10.1109/TGRS.2006.876288.
[17]  Richards, J.A. Analysis of remotely sensed data: The formative decades and the future. IEEE Trans. Geosci. Remote Sens 2005, 43, 422–432, doi:10.1109/TGRS.2004.837326.
[18]  Peddle, D.R.; Ferguson, D.T. Optimisation of multisource data analysis: An example using evidential reasoning for GIS data classification. Comput. Geosci 2002, 28, 45–52, doi:10.1016/S0098-3004(01)00012-7.
[19]  Benediktsson, J.A.; Sveinsson, J.R. Consensus based classification of multisource remote sensing data. Multiple classifier systems. Lect. Notes Comput. Sci 2000, 1857/2000, 280–289.
[20]  Prieto, D.F. Change detection in multisensor remote-sensing data for desertification monitoring. Proceedings of the Third International Symposium on Retrieval of Bio- and Geophysical Parameters from SAR Data for Land Applications, Sheffield, UK, 11–14 September 2001. ESA SP-475; Wilson, A., Ed.; ESA Publications Division: Noordwijk, The Netherlands, 2002; pp. 255–260.
[21]  Khoshelham, K.; Nedkov, S.; Nardinocchi, C. A comparison of Bayesian and evidence-based fusion methods for automated building detection in aerial data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2008, 37, 1183–1188.
[22]  Yang, Y.; Lin, Y. Object-based level set model for building detection in urban area. Proceedings of the 2009 Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009.
[23]  Hermosilla, T.; Almonacid, J.; Fernández-Sarría, A.; Ruiz, L.A.; Recio, J.A. Combining features extracted from imagery and lidar data for object-oriented classification of forest areas. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2010, 38, 194–200.
[24]  ERDAS Imagine. 2012. Available online: http://www.erdas.com/ (accessed on 9 January 2012).
[25]  Yuan, D.; Elvidge, C.D. Comparison of relative radiometric normalization techniques. ISPRS J. Photogramm. Remote Sens 1996, 51, 117–126, doi:10.1016/0924-2716(96)00018-4.
[26]  Chatelain, F.; Tourneret, J.-Y.; Inglada, J.; Ferrari, A. Bivariate gamma distributions for image registration and change detection. IEEE Trans. Image Process 2007, 16, 1796–1806, doi:10.1109/TIP.2007.896651. 17605378
[27]  Alberga, V. Similarity measures of remotely sensed multi-sensor images for change detection applications. Remote Sens 2009, 1, 122–143, doi:10.3390/rs1030122.
[28]  Inglada, J.; Mercier, G. The multiscale change profile: A statistical similarity measure for change detection in multitemporal SAR images. Proceedings of 2006 IEEE International Geoscience and Remote Sensing Symposium, Denver, CO, USA, 31 July–4 August 2006.
[29]  Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image Clasiffication. IEEE Trans. Syst. Man Cybern 1973, SMC3, 610–621.
[30]  Kayitakire, F.; Hamel, C.; Defourny, P. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery. Remote Sens. Environ 2006, 102, 390–401, doi:10.1016/j.rse.2006.02.022.
[31]  Asner, G.P.; Bustamante, M.M.C.; Townsend, A.R. Scale dependence of biophysical structure in deforested areas bordering the Tapajo’s National Forest, Central Amazon. Remote Sens. Environ 2003, 87, 507–520, doi:10.1016/j.rse.2003.03.001.
[32]  Fung, T.; LeDrew, E. The determination of optimal threshold levels for change detection using various accuracy indices. Photogramm. Eng. Remote Sens 1988, 54, 1449–1454.
[33]  Ridler, T.; Calvard, S. Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man Cybern 2007, 8, 630–632.
[34]  Otsu, N. A threshold selection method from gray-level histograms. Automatica 1975, 11, 285–296, doi:10.1016/0005-1098(75)90044-8.
[35]  Nacerdine, N.; Hamami, L.; Tridi, M.; Oucief, N. Non-Parametric histogram-based thresholding methods for weld defect detection radiography. World Acad. Sci. Eng. Technol 2005, 9, 213–217.
[36]  Kapur, J.; Sahoo, P.; Wong, A. A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process 1985, 29, 273–285, doi:10.1016/0734-189X(85)90125-2.
[37]  Li, C.H.; Lee, C. Minimum cross entropy thresholding. Pat. Recognit 1993, 26, 617–625, doi:10.1016/0031-3203(93)90115-D.
[38]  Li, C.; Tam, P. An iterative algorithm for minimum cross entropy thresholding. Pat. Recognit. Lett 1998, 19, 771–776, doi:10.1016/S0167-8655(98)00057-9.
[39]  Shanbhag, A.G. Utilization of information measure as a means of image thresholding. Graph. Models Image Process 1994, 56, 414–419, doi:10.1006/cgip.1994.1037.
[40]  Sahoo, P.; Wilkins, C.; Yeager, J. Threshold selection using Renyi’s entropy. Pat. Recognit 1997, 30, 71–84, doi:10.1016/S0031-3203(96)00065-9.
[41]  Yen, J.C.; Chang, F.J.; Chang, S. A new criterion for automatic multilevel thresholding. IEEE Trans. Image Process 2002, 4, 370–378.
[42]  Solberg, A.H.S.; Jain, A.K.; Taxt, T. Multisource classification of remotely sensed data: Fusion of Landsat TM and SAR images. IEEE Trans. Geosci. Remote Sens 1994, 32, 768–778, doi:10.1109/36.298006.
[43]  Luo, R.C.; Chih-Chen, Y.; Kuo Lan, S. Multisensor fusion and integration: Approaches, applications, and future research directions. IEEE Sens. J 2002, 2, 107–119, doi:10.1109/JSEN.2002.1000251.
[44]  Yonhong, J.; Swain, P.H. Bayesian contextual classification based on modified M-estimates and Markov random fields. IEEE Trans. Geosci. Remote Sens 1996, 34, 67–75, doi:10.1109/36.481894.
[45]  Clark, J.J.; Yuille, A.L. Data Fusion for Sensory Information Processing Systems; Kluwer Academic Publishers: Norwell, MA, USA, 2010; p. 239.
[46]  Bordley, R.F. A multiplicative formula for aggregating probability assessments. Manag. Sci 1982, 28, 1137–1148, doi:10.1287/mnsc.28.10.1137.
[47]  Chang, C.-I.; Du, Y.; Wang, J.; Guo, S.-M.; Thouin, P.D. Survey and comparative analysis of entropy and relative entropy thresholding techniques. IEEE Proc. Vis. Image Signal Process 2006, 153, 837–850, doi:10.1049/ip-vis:20050032.
[48]  Shackelford, A.K.; Davis, C.H. A hierarchical fuzzy classification approach for high-resolution multispectral data over urban areas. IEEE Trans. Geosci. Remote Sens 2003, 41, 1920–1932, doi:10.1109/TGRS.2003.814627.
[49]  Fawcett, T. An introduction to ROC analysis. Pat. Recognit. Lett 2006, 27, 861–874, doi:10.1016/j.patrec.2005.10.010.
[50]  Champion, N.; Stamon, G.; Pierrot-Deseilligny, M.; Saint Mandé, F. Automatic revision of 2d building databases from high resolution satellite imagery: A 3D photogrammetric approach. Lect. Notes Geoinformation Cartogr 2009, 1, 43–66.
[51]  Renza, D.; Martínez, E.; Arquero, A.; Sánchez, J. Analysis of man-made structure changes by means dual tree complex wavelet transform. Proceedings of the 30th EARSeL Symposium: Remote Sensing for Science, Education and Culture, Prague, Czech Republic, 30 May–2 June 2011.
[52]  Pajares, G. A hopfield neural network for image change detection. IEEE Trans. Neural Netw 2006, 17, 1250–1264, doi:10.1109/TNN.2006.875978. 17001985

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133