There has been a lot of interest in recent years in using inertial sensors (accelerometers and gyroscopes) to monitor movement disorder motion and monitor the efficacy of treatment options. Two of the most prominent movement disorders, which are under evaluation in this research paper, are essential tremor (ET) and Parkinson’s disease (PD). These movement disorders are first evaluated to show that ET and PD motion often depict more (tremor) motion content in the 3–12 Hz frequency band of interest than control data and that such tremor motion can be characterized using inertial sensors. As well, coherence analysis is used to compare between pairs of many of the six degrees-of-freedom of motions under evaluation, to determine the similarity in tremor motion for the various degrees-of-freedom at different frequency bands of interest. It was quite surprising that this coherence analysis depicts that there is a statistically significant relationship using coherence analysis when differentiating between control and effectively medicated PD motion. The statistical analysis uncovers the novel finding that PD medication induced dyskinesia is depicted within coherence data from inertial signals. Dyskinesia is involuntary motion or the absence of intended motion, and it is a common side effect among medicated PD patients. The results show that inertial sensors can be used to differentiate between effectively medicated PD motion and control motion; such a differentiation can often be difficult to perform with the human eye because effectively medicated PD patients tend to not produce much tremor. As well, the finding that PD motion, when well medicated, does still differ significantly from control motion allows for researchers to quantify potential deficiencies in the use of medication. By using inertial sensors to spot such deficiencies, as outlined in this research paper, it is hoped that medications with even a larger degree of efficacy can be created in the future.
References
[1]
Louis, E.D.; Ford, B.; Frucht, S.; Barnes, L.F.; Tang, M.X.; Ottman, R. Risk of tremor and impairment from tremor in relatives of patients with essential tremor: A community-based family study. Ann. Neurol 2001, 49, 761–769.
[2]
Smaga, S. Tremor. Am. Fam. Phys 2003, 68, 1545–1552.
Deuschl, G.; Krack, P.; Lauk, M.; Timmer, J. Clinical neurophysiology of tremor. J. Clin. Neurophysiol 1996, 13, 110–121.
[5]
Elble, R.J.; Koller, W.C. Tremor; The John Hopkins University Press: Baltimore, MD, USA, 1990.
[6]
Ai, L.; Wang, J.; Wang, X. Multi-features fusion diagnosis of tremor based on artificial neural network and D-S evidence theory. Signal Process 2008, 88, 2927–2935.
[7]
Engin, M.; Demirag, S.; Engin, E.Z.; Celebi, G.; Ersan, F.; Asena, E.; Colakoglu, Z. The classification of human tremor signals using an artificial neural network. Expert Syst. Appl 2007, 33, 754–761.
[8]
Hanson, M.A.; Powell, H.C.; Frysinger, R.C.; Huss, D.S.; Elias, W.J.; Lach, J.; Brown, C.L. Teager Energy Assessment of Tremor Severity in Clinical Application of Wearable Inertial Sensors. Proceedings of the IEEE/NIH Life Science Systems and Applications Workshop (LISSA 2007), Bethesda, MD, USA, 8–9 November 2007; pp. 136–139.
[9]
Goswami, J.C.; Chan, A.K. Fundamentals of Wavelets: Theory, Algorithms, and Applications; Wiley-Interscience: New York, NY, USA, 1999.
[10]
Matlab (computational environment) Help Documentation. scal2frq function. 2010. Available Online: http://matlab.izmiran.ru/help/toolbox/wavelet/scal2frq.html (accessed on 13 July 2010).
[11]
Halliday, D.M.; Rosenberg, J.R.; Amjad, A.M. A framework for the analysis of mixed time series/point process data—Theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog. Biophys. Mol. Biol 1995, 64, 237–278.
[12]
Patel, S.; Lorincz, K.; Hughes, R.; Huggins, N.; Growdon, J.; Standaert, D.; Akay, M.; Dy, J.; Welsh, M.; Bonato, P. Monitoring motion fluctuations in patients with parkinson’s disease using wearable sensors. IEEE Trans. Inf. Technol. Biomed 2009, 13, 864–873.
[13]
Powell, H.C.; Hanson, M.A.; Lach, J. On-Body inertial sensing and signal processing for clinical assessment of tremor. IEEE Trans. Biomed. Circuits Syst 2009, 3, 108–116.
[14]
Teskey, W.J.; Elhabiby, M.; El-Sheimy, N. Adaptive Human Tremor Assessment and Attenuation: Six Degree-of-Freedom Motion Analysis Utilizing Wavelets. Proceedings of the INSTICC BIODEVICES Conference, Rome, Italy, 26–29 January 2011.
[15]
Sabatini, A.M. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. IEEE Trans. Biomed. Eng 2006, 53, 1346–1356.
[16]
Shin, E.H. Estimation Techniques for Low Cost Inertial NavigationPh.D. Dissertation. Department of Geomatics Engineering, University of Calgary, Calgary, AB, Canada, 2005.
[17]
Brown, R.G.; Hwang, P.Y.C. Introduction to Random Signals and Applied Kalman Filtering, 3rd ed ed.; John Wiley & Sons, Inc: Hoboken, NJ, USA, 1997.
[18]
Gelb, A. Applied Optimal Estimation, 5th ed ed.; MIT Press: Cambridge, MA, USA, 1974.
Mallat, S. A Wavelet Tour of Signal Processing; Academic Press: New York, NY, USA, 1998.
[21]
Ogden, R.T. Essential Wavelets for Statistical Applications and Data Analysis; Birkh?user: Boston, MA, USA, 1997.
[22]
ST Microelectronics. LIS3L06AL MEMS Inertial Sensor Data Sheet, 2006; pp. 1–17. Available online: http://www.st.com/stonline/products/literature/ds/11669.pdf (accessed on 13 July 2010).
[23]
Epson Toyocom. XV-8100CB Ultra Miniature Size Gyro Sensor Data Sheet, 2007; pp. 1–2. Available online: http://www.frank-schulte.com/media/Pdf/XV-8100CB_E06X.pdf (accessed on 13 July 2010).
[24]
Teskey, W.J.E.; Elhabiby, M.; El-Sheimy, N. Movement Disorders Assessment and Attenuation Techniques for Removal of Tremor. Proceedings of 4th International Joint Conference on Biomedical Engineering Systems and Technologies(BIOSTEC 2011), Rome, Italy, 26–29 January 2011; pp. 57–73.
[25]
Rao, A.S.; Bodenheimer, R.E.; Davis, T.L.; Li, R.; Voight, C.; Dawant, B.M. Quatifying Drug Induced Dyskinesia in Parkinson’s Disease Patients using Standardized Videos. Proceedings of the 30th Annual International IEEE EMBS Conference, Vancouver, BC, Canada, 20–24 August 2008; pp. 1769–1772.
[26]
Gnanadesikan, R.; Wilk, M.B. Probability plotting methods for the analysis of data. Biometrika 1968, 55, 1–17.
[27]
Walpole, R.E.; Myers, R.H.; Myers, S.L.; Ye, K. Probability and Statistics for Engineers and Scientists, 7th ed ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002.
[28]
Welch, B.L. The generalization of “Student’s” problem when several different population variances are involved. Biometrika 1947, 34, 28–35.